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Abstract—Automated program repair is the problem of automatically fixing bugs in programs in order to significantly reduce the
debugging costs and improve the software quality. To address this problem, test-suite based repair techniques regard a given test suite
as an oracle and modify the input buggy program to make the entire test suite pass. GenProg is well recognized as a prominent repair
approach of this kind, which uses genetic programming (GP) to rearrange the statements already extant in the buggy program.
However, recent empirical studies show that the performance of GenProg is not fully satisfactory, particularly for Java. In this paper, we
propose ARJA, a new GP based repair approach for automated repair of Java programs. To be specific, we present a novel
lower-granularity patch representation that properly decouples the search subspaces of likely-buggy locations, operation types and
potential fix ingredients, enabling GP to explore the search space more effectively. Based on this new representation, we formulate
automated program repair as a multi-objective search problem and use NSGA-II to look for simpler repairs. To reduce the
computational effort and search space, we introduce a test filtering procedure that can speed up the fitness evaluation of GP and three
types of rules that can be applied to avoid unnecessary manipulations of the code. Moreover, we also propose a type matching
strategy that can create new potential fix ingredients by exploiting the syntactic patterns of existing statements. We conduct a
large-scale empirical evaluation of ARJA along with its variants on both seeded bugs and real-world bugs in comparison with several
state-of-the-art repair approaches. Our results verify the effectiveness and efficiency of the search mechanisms employed in ARJA and
also show its superiority over the other approaches. In particular, compared to jGenProg (an implementation of GenProg for Java), an
ARJA version fully following the redundancy assumption can generate a test-suite adequate patch for more than twice the number of
bugs (from 27 to 59), and a correct patch for nearly four times of the number (from 5 to 18), on 224 real-world bugs considered in
Defects4J. Furthermore, ARJA is able to correctly fix several real multi-location bugs that are hard to be repaired by most of the existing
repair approaches.

Index Terms—Program repair, patch generation, genetic programming, multi-objective optimization, genetic improvement.
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1 INTRODUCTION

AUTOMATED program repair [1]–[3] aims to automat-
ically fix bugs in software. This research field has

recently stirred great interest in the software engineering
community since it tries to address a very practical and
important problem. Automatic repair techniques generally
depend on an oracle which can consist of a test suite [4],
pre-post conditions [5] or an abstract behavioral model [6].

Our study focuses on the test-suite based program repair
that considers a given test suite as an oracle. The test suite
should contain at least one initially failing test case that
exposes the bug to be repaired and a number of initially
passing test cases that define the expected behavior of the
program. In terms of test-suite based repair, a bug is said
to be fixed or repaired if a repair approach generates a patch
that makes its whole test suite pass. The patch obtained can
be referred to as a test-suite adequate patch [7].

GenProg [4], [8], [9] is one of the most well-known repair
approaches for test-suite based program repair. This general
approach is based on the redundancy assumption, which
means that the code that can be used to generate a repair
(called fix ingredients) already exists elsewhere in the buggy
program; and it uses genetic programming (GP) [10], [11]
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to search for potential patches that can fulfill the test suite.
Although GenProg has been well recognized as a state-of-
the-art repair approach in the literature, it has caused certain
academic controversies among some researchers.

First, Qi et al. [12] studied to what extent GenProg can
benefit from GP. Their results on GenProg benchmarks [9]
indicate that just replacing GP in GenProg with random
search can improve both repair effectiveness and efficiency,
thereby questioning the necessity and effectiveness of GP
in automated program repair. Second, an empirical study
conducted in [13] pointed out that the overwhelming ma-
jority of patches reported by GenProg are incorrect and are
equivalent to a single functionality deletion. Here we do not
focus on the potential incorrectness of the patches that is
mainly due to the weakness of the test suite rather than the
repair approaches [14]. Our major concern is the statement
that GenProg usually generates nonsensical patches (e.g., a
single deletion), which challenges the expressive power of
GP to produce meaningful or semantically complex repairs.
Lastly, a recent large-scale experiment [7] showed that an
implementation of GenProg for Java (called jGenProg) can
find a test-suite adequate patch for only 27 out of 224 real-
world Java bugs, and only five of them were identified as
correct. Obviously, the performance of GenProg for Java is
currently far from satisfactory.

Considering these adverse reports about GenProg, it is
necessary to revisit the most salient features of the sys-
tem that qualify it as a well-established repair system. We
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think there are at least two important features. One is
that GenProg can scale to large programs, mainly owing
to its patch representation [9]. The other is that GenProg
can potentially address various types of bugs because the
expressive power of GP allows for diverse transformations
of code. In particular, GP can change multiple locations
of a program simultaneously, so that GenProg is likely to
fix multi-location bugs that cannot be handled by most
of the other repair approaches. The scalability of GenProg
is visible since it has been widely applied to large real-
world software [7], [9], making it distinguished from those
approaches (e.g., SemFix [15] and SearchRepair [16]) that are
largely limited to small programs. However, as mentioned
before, the expressive power of GenProg inherited from
GP has not been well supported and validated by recent
experimental studies in the literature [7], [12], [13]. We think
it is very important to shed more light on this issue and
then address it, which would make GP really powerful in
automated program repair.

Generally, a successful repair system consists of two key
elements [13]: 1) a search space that contains correct patches;
2) a search algorithm that can navigate the search space
effectively and efficiently. For the search space, GenProg
uses the redundancy assumption, which has been largely
validated by two independent empirical studies [17], [18].
This leaves the search algorithm as a bottleneck that might
make GenProg unable to fulfill its potential for generating
nontrivial patches. The reason could be that the search
ability of the underlying GP algorithm in GenProg is not
strong enough to really sustain its expressive power.

Given this analysis, our primary goal is to improve the
effectiveness of the search via GP for program repair. To
this end, we present a new GP based repair system for
automated repair of Java programs, called ARJA. ARJA is
mainly characterized by a novel patch representation for
GP, multi-objective search, and several strategies to reduce
the search space. Our results indicate that an ARJA version
that fully follows the redundancy assumption can generate
a test-suite adequate patch for 59 real bugs in four projects
of Defects4J [19] as opposed to only 27 reported by jGenProg
[7]. By manual analysis, we find that this ARJA version can
synthesize a correct patch for at least 18 bugs in Defects4J as
opposed to only 5 by jGenProg. To our knowledge, some
of the 18 correctly fixed bugs have never been repaired
correctly by other repair approaches. Furthermore, ARJA is
able to correctly fix several multi-location bugs that are hard
to be addressed by most of the existing repair approaches.

The main contributions of this paper are as follows:
1) The solution representation is a key factor that concerns

the performance of GP. Inspired by the work of Oliveira
et al. [20], we propose a novel patch representation for
GP based program repair, which properly decouples the
search subspaces of likely-buggy locations, operation
types and replacement/insertion code.

2) We propose to formulate automated program repair
as a multi-objective optimization problem and employ
NSGA-II [21] to search for potential repairs.

3) We introduce three types of rules which are integrated
into three different phases of ARJA search (i.e., opera-
tion initialization, ingredient screening and solution de-
coding), in order to reduce the search space effectively.

4) Although our study mainly focuses on improving the
search algorithm, we also make an effort to enrich the
search space reasonably beyond reusing code already
extant in the program. To that end, we propose a type
matching strategy which can create promising new
code for bug fixing by leveraging syntactic patterns of
existing code.

5) We conduct a large-scale experimental study on 18
seeded bugs and 224 real-world bugs, from which some
new findings and insights are obtained.

6) We develop a publicly-available program repair library
for Java, which currently includes the implementation
of our proposed approach (i.e., ARJA) and three pre-
vious repair approaches originally designed for C (i.e.,
GenProg [9], RSRepair [12] and Kali [13]). It is expected
that the library can facilitate further replication and
research on automated Java software repair.

The remainder of this paper is organized as follows.
In Section 2, we provide the background knowledge and
motivation for our study. Section 3 describes the proposed
repair approach in detail. Section 4 presents the experi-
mental design. Sections 5 and 6 report the experimental
results on seeded bugs and real bugs, respectively. Section
7 discusses the threats to validity. Section 8 lists the related
work on test-suite based program repair. Finally, Section 9
concludes and outlines directions for future work.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background information of
ARJA, including multi-objective genetic programming, the
GenProg system and Oliveira et al.’s patch representation.
Then, we describe the goal and motivation of our study.

2.1 Multi-Objective Genetic Programming
Genetic programming (GP) is a stochastic search technique
which uses an evolutionary algorithm (EA), often derived
from a genetic algorithm (GA), to evolve computer pro-
grams towards particular functionality or quality goals. In
GP, a computer program (i.e., phenotype) is encoded as a
genome (i.e., genotype), which can be a syntax tree [10], an
instruction sequence [22], or other linear and hierarchical
data structures [23]; a fitness function is used to evalu-
ate each genome in terms of how well the corresponding
program works on the predefined task. GP starts with a
population of genomes that is typically randomly produced
and evolves over a series of generations progressively. In
each generation, GP first selects a portion of the current
population based on fitness, and then performs crossover
and mutation operators on those selected to generate new
genomes which would form the next population.

Traditionally, the aim of GP is to create a working pro-
gram from scratch, in order to solve a problem encapsulated
by a fitness function. Due to the limited size of successful
programs that GP can generate, GP research and applica-
tions over the past few decades mainly focused on predic-
tive modeling (e.g., medical data classification [24], energy
consumption forecasting [25] and scheduling rules design
[26]), where a program is usually just a symbolic expression.
It was not until recently that GP was used to evolve real-
world software systems [4], [9], [27], [28]. Here, instead of
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starting from scratch, such GP applications generally take
an existing program as a starting point, and then improve
it by optimizing its functional properties (e.g., by fixing
bugs) [4], [9] or non-functional properties (e.g., execution
time and memory consumption) [27]–[30]. This paradigm of
applying GP is formally called genetic improvement [31] in
the literature.

Moreover, most previous usages of GP only consider a
single objective. However, there usually exist several com-
peting objectives that need to be optimized simultaneously
in a real-world task, which can be formulated as a multi-
objective optimization problem (MOP). Mathematically, a
general MOP can be stated as

min f(x) = (f1(x), f2(x), . . . , fm(x))T

subject to x ∈ Ω ⊆ Rn (1)

x is a n-dimensional decision vector in the decision space
Ω, and f : Ω→ Θ ⊆ Rm, is an objective vector consisting of
m objective functions, which maps the decision space Ω to
the attainable objective space Θ. The objectives in Eq.(1) are
often in conflict with each other (i.e., the decreasing of one
objective may lead to the increasing of another), so there
is typically no single solution that optimizes all objectives
simultaneously. To solve a MOP, attention is paid to approx-
imating the Pareto front (PF) that represents optimal trade-
offs between objectives. The concept of a PF is formally
defined as follows.1

Definition 1 (Pareto Dominance). A vector p = (p1, p2,
. . . , pm)T is said to dominate another vector q = (q1, q2,
. . . , qm)T, denoted by p ≺ q, iff ∀i ∈ {1, 2, . . . ,m} :
pi ≤ qi and ∃j ∈ {1, 2, . . . ,m} : pj < qj .

Definition 2 (Pareto Front). The Pareto front of a MOP is
defined as PF := {f(x∗) ∈ Θ | @x ∈ Ω, f(x) ≺ f(x∗)}.

From Definition 2, the PF is a subset of solutions which are
not dominated by any other solution.

Due to the population-based nature of EAs, they are able
to approximate the PF of a MOP in a single run by obtaining
a set of non-dominated objective vectors, from which a
decision maker can select one or more for their specific
needs. These EAs are called multi-objective EAs (MOEAs).
A comprehensive survey of MOEAs can be be found in
[32]. Considering a suitable multi-objective scenario, multi-
objective GP evolves a population of candidate programs
for multiple goals using a MOEA approach.

Fig. 1(a) illustrates Pareto dominance for a MOP with
two objectives. According to Definition 1, all objective vec-
tors within the grey rectangle (e.g., b and c) are dominated
by a, and a and d are non-dominated by each other as
a is better for f1 while d is better for f2. Because e is
on the PF, no objective vectors in Θ can dominate it. To
provide sufficient selection pressure toward the PF, many
Pareto dominance-based MOEAs, e.g., NSGA-II [21], in-
troduce elitism based on non-dominated sorting. Fig. 1(b)
illustrates the non-dominated sorting procedure, where the
union population (combination of current population and
offsprings) is divided into different non-domination levels.
The solutions on the first level are obtained by collecting

1In the following we shall assume that the goal is to minimize
objectives.

every solution that is not dominated by any other one in the
union population. To find the solutions on the j-th (j ≥ 2)
level, the solutions on the previous j − 1 levels are first
removed, and the same procedure is repeated again. The
solutions on a lower level will have a higher priority to enter
into the next population than those of a higher level.
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Fig. 1. Illustration of Pareto dominance and non-dominated sorting.

2.2 A Brief Introduction to GenProg

GenProg [4], [9] is a generic approach that uses GP to
automatically find repairs of a buggy program. GenProg
takes a buggy program as well as a test suite as input
and generates one or more test-suite adequate patches for
output. The test suite is required to contain initially passing
tests to model the expected program functionality and at
least one initially failing test to trigger the bug. To obtain
a program variant that passes all the given tests, GenProg
modifies the buggy program by using a combination of
three kinds of statement-level edits (i.e., delete a destination
statement, replace a destination statement with another
statement, and insert another statement before a destination
statement). In the early versions of GenProg [4], [8], [33],
each genome in the underlying GP is an abstract syntax
tree (AST) of the program combined with a weighted path
through it. However, the AST based representation does
not scale to large programs, since the memory consumed
by a population of program ASTs is usually unaffordable.
Le Goues et al. [9] addressed the scalability problem of
GenProg by using the patch representation [34] instead of
the AST representation. Specifically, each genome now is
represented as a patch, which is stored as a sequence of
edit operations parameterized by AST node numbers (e.g.,
Replace(7, 13), see Fig. 2(a)). The phenotype of a genome
of this representation is a modified program obtained by
applying the patch to the buggy input program.

Based on the patch representation, GenProg can use
single-point crossover to generate offspring solutions. This
crossover randomly chooses a cut point in each of two
parents, and the genes beyond the cut points are swapped
between the two parents to produce two offspring solutions.
Fig. 2(b) illustrates the single-point crossover in GenProg. In
crossover, we can only expect material in the two parents to
be differently combined, but not newly generated.

The mutation operator is therefore very important in
GenProg, because it is responsible for introducing new edit
operations into the population. To conduct the mutation on
a solution, first each potentially faulty statement is chosen as
a destination statement with a probability of mutation rate
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R(5, 15) R(7, 13)I(2, 10) I(6, 20)D(9)

(a) Patch representation

I(9, 15) I(2, 10)R(7, 13)

cut point
cut point

Offspring 1

Offspring 2Parent 2

Parent 1

D(5) I(2, 10)R(7, 13)

I(9, 15) R(2, 36)

Crossover

D(5) R(2, 36)

(b) Crossover

Mutation
D(5) R(2, 36) D(5) I(6, 18)R(2, 36)

(c) Mutation

Fig. 2. Illustration of patch representation, crossover, and mutation in
GenProg. For brevity, “D” denotes a delete operation; “R” a replace;
and “I” an insert. The integers denote the AST node numbers of the
corresponding statements. D(a) means that delete “a”; R(a, b) means
that replace “a” with “b”; I(a,b) means that insert “b” before “a”.

weighted by its suspiciousness. Once a destination state-
ment is determined, an operation type is randomly chosen
from three types (i.e., “Delete”, “Replace” and “Insert”).
In case of “Replace” or “Insert”, a second statement (i.e.,
replacement/insertion code) is randomly chosen from those
statements which only reference variables in the variable
scope at the destination and are visited by at least one test.
Each edit operation created in this way is appended to a list
of edits in the solution under mutation. Fig. 2(c) illustrates
the mutation operator in GenProg.

The overall procedure of GenProg is summarized as fol-
lows. First, GenProg localizes potentially buggy statements
and gives each of them a weight measuring its suspicious-
ness. Then, GP searches to obtain an initial population by
independently mutating N (the population size) copies of
the empty patch. In each generation of GP, GenProg uses
tournament selection to select N/2 parent solutions for
mating from the current population, and conducts crossover
(as in Fig. 2(b)) on the parents to generate N/2 offspring
solutions. Afterwards, it conducts one mutation (as in Fig.
2(c)) on each parent and each offspring. The parents together
with the offsprings will form the next population. The GP
loop is terminated when a program variant passes all given
tests or another termination criterion is reached.

2.3 Oliveira et al.’s Patch Representation
Recently, Oliveira et al. [20] presented a lower-granularity
patch representation, which decouples the three subspaces
corresponding to three kinds of partial information in an
edit operation. Using this representation, the patch repre-
sented in Fig. 2(a) can be reformulated as that shown in
Fig. 3(a), where the representation is divided into three
different parts: the first part is a list of operation types, the
second a list of likely-buggy locations, and the third a list of
replacement/insertion code.

Based on this representation, Oliveira et al. further sug-
gested three crossover operators. Fig. 3(b) illustrates one
of them called OP1SPACE. This crossover first randomly
chooses one part in the representation, and conducts single-
point crossover only on that part keeping the other two parts
unchanged. However, due to different numbers of genes

in the three parts after crossover, there exist some invalid
genes that should be removed to obtain final offspring so-
lutions. The removal of invalid genes will potentially result
in information loss. To relieve this issue, they introduced a
memorization scheme to reuse invalid genes.

Replacement/insertion codeLikely-buggy locationsTypes of edit operations

R RI ID 5 72 69 15 1310 209

(a) Patch representation

Remove 
invalid genes

Remove 
invalid genes

D IR 5 27 5 1013 RI 9 2 15 36

5 27 29

25 9 27

9 27D IR RI25 36155 1013

RD 25 135 RI 361579

Crossover

Cut point = 1

Parent 1 Parent 2

Offspring 1 Offspring 2

(b) Crossover

Fig. 3. Illustration of patch representation and crossover introduced by
Oliveira et al. [20].

2.4 Goal and Motivation

Our overall goal in this study is to develop a more powerful
GP based system for automated repair of Java programs. To
this end, we conduct an analysis of the potential limitations
of GenProg so as to guide the design of our new system.
There are several deficiencies in GenProg that motivated us
to pursue this goal, which are discussed as follows.

2.4.1 High-Granularity Patch Representation
In GenProg, each gene in the patch representation (see Fig.
2(a)) is a high-granularity edit operation where the opera-
tion type, likely-buggy location (i.e., destination statement),
and replacement/insertion code are invisible to the crossover
(see Fig. 2(b)) and mutation (see Fig. 2(c)) operators. Ma-
nipulating such high-level units via GP would hinder the
efficient recombination of genetic information between so-
lutions. This is mainly because good partial information of
an edit (e.g., a promising operation type, an accurate faulty
location, and a useful replacement/insertion code) cannot
be propagated from one solution to others. For illustration,
suppose there is a bug that requires two edit operations
to be repaired: D(5), R(2, 10), and there are two candidate
solutions in the population that are the same as “Parent 1”
and “Parent 2” in Fig. 2(b) respectively. As can be seen, the
two candidate solutions together contain all the material
to compose the correct patch. The crossover in GenProg
can easily propagate the desired edit D(5) in “Parent 1” to
offspring solutions. However, because such crossover does
not introduce any new edit, it cannot produce R(2,10), even
though I(2, 10) in “Parent 1” and R(2, 36) in “Parent 2”
are both one modification away and their desired partial
information can be obtained from each other. The muta-
tion in GenProg creates new edits from scratch, where the
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operation types and replacement/insertion code are just
randomly chosen from all those available. Thus, there is only
a slim chance for mutation to produce exactly R(2,10).

The representation by Oliveira et al. [20] makes the
search explicitly explore three subspaces and thus over-
comes GenProg’s drawback of over-constraining the search
ability to some extent, but it may lead to new problems.
One problem is that the invalid genes can lead to the loss
of good partial information. The memorization scheme may
be helpful, but it does not appear to increase the success
rate of repair as indicated in [20]. Another problem is that
the crossover on this representation exchanges information
of operation types and replacement/insertion code between
different likely-buggy locations very frequently. However,
this situation may not be desirable because every likely-
buggy location has its own syntactic/semantic context, and
their preferable operation types and replacement/insertion
code can vary a lot. Moreover, due to scoping issues, just the
available replacement/insertion code can be quite different
at different likely-buggy locations, so exchanging replace-
ment/insertion code between such locations may easily
result in an uncompilable program variant.

Our study aims to propose a novel lower-granularity
patch representation that can address the limitations of
GenProg’s representation while avoiding the above two
problems caused by the representation introduced in [20].

2.4.2 Limitation With Respect to Multi-Edit Patches
It is common that a bug repair requires multiple edits to
the buggy program. For example, among 224 real bugs of
four projects (i.e., Chart, Time, Lang and Math) in Defects4J
[19], over two third of human-written patches contain at
least two statement-level edits. However, most of existing
repair approaches are poor at creating multi-edit patches.
Some approaches such as SemFix [15] and Nopol [35]
even have no ability in this respect since they handle each
possibly faulty statement separately. GP based approaches
such as GenProg can manipulate multiple faulty statements
simultaneously, so they have the potential to find multi-
edit patches. However, an empirical study by Qi et al. [13]
indicated that most of patches generated by GenProg are
indeed equivalent to a single functionality deletion. The
recent experimental results [19] on Defects4J also showed
that GenProg does not succeed in fixing any bug that may
really need multiple edits. To our knowledge, there has been
no consensus in the literature on GenProg’s weakness in the
multi-edit patch generation. We think that the search ability
of the underlying GP in GenProg matters a lot.

Our study aims to address the limitation of GenProg
with respect to multi-edit patches via a novel multi-objective
GP with stronger search ability.

2.4.3 Expensive Fitness Evaluation
In GenProg, all given tests need to be run in order to evalu-
ate the fitness of a solution accurately. However it is usually
computationally expensive to run all the associated tests
of real-world software. Expensive fitness evaluations will
limit the use of a reasonably large number of generations or
population size in GP, thereby greatly limiting the potential
of GP for program repair. To relieve this problem, Fast et al.
[36] proposed to just use a random sample of given tests for

each fitness evaluation. That strategy can increase efficiency,
but it will unavoidably reduce the precision of the search.

We argue that not all given tests are necessary for fitness
evaluation. In fact, many can be omitted to speed up fitness
evaluation, but without affecting the precision of search.

2.4.4 Limited Utilization of Existing Code

Today, large Java projects are commonly developed by many
programmers, each of whom is responsible for only one or
several modules. Although the names of important APIs
or even field variables can be determined in the software
design phase, the names of local variables and private
methods are generally chosen based on the preference of
the responsible programmer, which leads to the fact that
even variables or methods with similar functions can have
different names in different Java files. Thus, for a likely-
buggy location, it is sometimes possible that we can make an
invalid statement become its hopeful replacement/insertion
code by replacing the invisible variables or methods with
similar ones in the scope. In other words, the underlying
pattern in a statement other than the statement itself can
also be exploited to acquire useful replacement/insertion
code. GenProg does not create any new code, in which the
replacement/insertion code is just taken from somewhere
else in the buggy program without change. This practice
may fail to make the most of the existing code.

Our study aims to present a strategy that can exploit
the pattern of the existing code appropriately, so as to
create some new replacement/insertion statements that are
potentially useful.

2.4.5 Limited Utilization of Constraints Enforced by the
Compiler

GenProg can conduct any deletion, replacement or insertion
on the possibly faulty statements, provided that the replace-
ment/insertion code meets the variable scope. However,
some operations indeed make little sense from the view of
programmers. Two main reasons are given as follows.

One reason is that although a replacement/insertion
statement conforms to the scope of variables and methods
at a destination, it can still violate other Java specifications
when it is pasted to that place. Another reason is that
certain operations either disrupt the program too much or
have no effect at all. For example, in Fig. 4, if we delete
the variable declaration statement (at line 1092), all the
remaining statements will be invalidated immediately since
they all reference the variable cloned. Moreover, even if
a variable declaration statement should be deleted, leaving
it as a redundant statement generally does not influence the
correctness of the program. Thus the deletion operation here
is not desired and should be disabled.

1092 final StrTokenizer cloned = (StrTokenizer) super.clone() ;
1093 if (cloned.chars != null) {
1094 cloned.chars = cloned.chars.clone() ;
1095 }
1096 cloned.reset () ;
1097 return cloned;

Fig. 4. The code snippet excerpted from the Commons Lang project.2



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Our study aims to encode such constraints enforced by
the compiler as a number of rules, which can be integrated
into the proposed repair method flexibly. We expect that the
search space of GP can be reduced effectively with these
rules. Note that our aim is very different from that of [37].
The rules considered in our study disallow definitely un-
necessary operations rather than likely unpromising ones,
so they generally do not restrict the expressive power of GP.

3 APPROACH

This section presents our generic approach to automatically
finding the test-suite adequate patches via multi-objective
GP. This approach is implemented as a tool called ARJA
that repairs Java code.

3.1 Overview
In a nutshell, ARJA works as depicted in Fig. 5. ARJA takes
a buggy program and a set of associated JUnit tests as the
input. Among the tests, at least one negative (i.e., initially
failing) test is required to be included, which exposes the
bug to be fixed. All the remaining are positive (i.e., initially
passing) tests, which describe the expected program behav-
ior. The basic goal of ARJA is to modify the program so that
all tests pass. Its process contains the following main steps.

Given the input, a fault localization technique is used
to identify potentially buggy statements which are to be
manipulated by GP. Meanwhile, coverage analysis is con-
ducted to record every statement that is visited by any JUnit
test. These statements collected in the coverage analysis
(referred to as seed statements in ARJA) provide the source
of the replacement/insertion code (referred to as ingredi-
ent statements in ARJA). Note that fault localization and
coverage analysis both require the Eclipse AST parser to
transform the line information of code to the corresponding
Java statements.

Once the likely-buggy statements are identified, they are
put to use immediately in two places. (1) positive tests un-
related to these statements are filtered out from the original
JUnit test suite, so that a reduced set of tests can be obtained
for further use. (2) the scope of variables and methods is
determined for the location of each of these statements.

Then the ingredient statements for each likely-buggy
statement considered are selected from the seed statements
in view of the current variable and method scope. For
convenience, a likely-buggy statement along with the scope
at its location and its corresponding ingredient statements
is called a modification point in short.

Before entering into the genetic search, the types of op-
erations on potentially buggy statements should be defined
in advance. Similar to GenProg [9], ARJA uses three kinds
of operations: delete, replace, and insert. More specifically, for
each likely-buggy statement, ARJA either deletes it, replaces
it with one of its ingredient statements, or inserts one of its
ingredient statements before it. Although only three opera-
tion types are currently used, users can add other possible
types [38] into ARJA easily due to its flexible design.

With a number of modification points, a subset of orig-
inal JUnit tests, and the available operation types in place,

2Apache Commons Lang, http://commons.apache.org/lang

ARJA encodes a program patch with a novel GP represen-
tation. Based on this new representation, a MOEA is em-
ployed to evolve the patches by simultaneously minimizing
the failure rate on tests and patch size. Finally, the non-
dominated solutions obtained with a failure rate of 0 are
output as test-suite adequate patches.

Notably, ARJA is also characterized by a module that
reduces the search space based on some specific rules.
These rules fall into three different types that are specially
designed for operation initialization, ingredient screening
and decoding in multi-objective GP, respectively. Applying
such rules allows the modified program to be compiled
successfully with a higher probability, while focusing the
search on more promising regions. of the search space.

3.2 Fault Localization and Coverage Analysis

For fault localization, ARJA uses an existing spectrum-based
technique called Ochiai [39]. It computes a suspiciousness
measure of a line of code (lc) as follows:

susp(lc) =
NCF√

NF × (NCF +NCS)
(2)

where NCF and NCS are the number of negative tests and
positive tests that visit the code lc, respectively, and NF

are the total number of negative tests. Fault localization
analysis returns a number of potentially faulty lines, each
represented as a tuple (cls, lid, susp). cls and lid are the
name of the Java class and the line number in this class,
respectively, which are used to identify a line uniquely, and
susp ∈ [0, 1] is the corresponding suspiciousness score.

To look for seed statements, ARJA implements a strategy
presented in [9] to reduce the number of seed statements
and to choose those more related to the given JUnit tests.
That is, coverage analysis is conducted to find the lines of
code that are visited by at least one test, each of which forms
a tuple (cls, lid).

After the above phases, the Eclipse AST parser is used
to parse the potentially faulty lines and seed lines into the
likely-buggy statements and seed statements respectively.
For duplicate seed statements, only one of them is recorded.
To conduct type/scope analysis latter, we explicitly request
the binding service of the AST parser at parse time.

Note that in ARJA, we do not consider all potentially
faulty statements. Instead, only a part of them is selected
according to their suspiciousness in order to reduce the
search space. The number of statements can be controlled in
ARJA by either of two parameters denoted γmin and nmax.
γmin quantifies the minimum suspiciousness score for state-
ments to be considered, while nmax determines that at most
nmax likely-buggy statements with highest suspiciousness
are chosen. If both γmin and nmax are set, ARJA uses the
smaller number determined by either of them.

3.3 Test Filtering

For each positive test, we record all the lines of code covered
during its execution, and if these lines do not include any
of the lines associated with the likely-buggy statements
selected, we can filter out this positive test. This strategy
can significantly speed up the fitness evaluation in GP.
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Fig. 5. Overview of the proposed automated program repair approach, i.e., ARJA.

Likely-buggy statements considered

The statements untouched by GP

These 
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tests can be 

filtered out

Fig. 6. Illustration of the execution path of the positive test that can be
filtered out.

Note that test filtering may not guarantee correctness
given that Java is a complex object-oriented language [40].
In this paper, we post-validate the final patches by ARJA on
the original test suites to make this technique more reliable.

3.4 Scope Determination

For each likely-buggy statement considered, most seed
statements cannot become an ingredient statement. This is
mainly because these seed statements access variables or
methods that are invisible at the location of the likely-buggy
statement. To identify as many of them as possible, we have
to determine the scope (i.e., all the visible variables and
methods) at that location.

Note that unlike GenProg [9], ARJA considers not only
the variable scope but also the method scope, which can
improve the chance of the modified Java program to being
compiled successfully. Suppose Cls and Med are the class
and the method where a likely-buggy statement appears,
respectively. According to the Java language specification,

ARJA collects three kinds of variables to constitute the vari-
able scope: the visible field variables in Med, the parameter
variables of Med, and the local variables in Med defined
before the location of the likely-buggy statement. Among
them, the first kind of variables has three sources: the field
variables declared in Cls, the field variables inherited from
the parent classes of Cls, and the field variables declared in
the outer classes (if they exist) of Cls. As for the method
scope, ARJA collects the visible methods in Med, which
have three sources similar to the visible field variables.

Note that besides the variable and method names, ARJA
also records their type information and modifiers to make
the scope more accurate. For a method, the type information
includes both parameter types and the return type.

3.5 Ingredient Screening

This procedure aims to select the ingredient statements for
each likely-buggy statement considered. In this phase, ARJA
first adopts the location awareness strategy introduced in [41].
This strategy defines three alternative ingredient modes (i.e.,
File, Package, Application), which are used to specify the
places where ingredients are taken from. Suppose a likely-
buggy statement is located in the file Fl that belongs to the
package Pk, then the “File” and “Package” modes mean
that this likely-buggy statement can only take its ingredient
statements from Fl and Pk, respectively. The “Application”
mode means that the ingredient statements can come from
anywhere in the entire buggy program. Compared to the
“Application” mode, the other two modes can significantly
restrict the space of ingredients, which may help to find the
repairs faster or find more of them.
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With the location awareness strategy incorporated, ARJA
provides the following two alternative approaches for in-
gredient screening, namely a direct approach and a type
matching based approach.

3.5.1 Direct Approach

The direct approach works as follows. For each consid-
ered likely-buggy statement, all the seed statements are
examined one by one. If a seed statement does not come
from the place specified by the ingredient mode, it will
just be ignored. Otherwise, we extract the variables and
methods accessed by this seed statement. For example, for
the following statement:

ret = 1.0 - getDistribution().beta +
b.regularizedBeta(getProbability(),
this.x + 1.0, getTrials() - this.x);

the extracted variables include ret, b, and x; and the ex-
tracted methods are getDistribution, getProbability
and getTrials. Note that for the sake of simplicity, we
do not consider the variable beta and the method regular-
izedBeta, because their accessibility usually depends on the
visibility of getDistribution and b, respectively.

For each extracted variable/method, we check whether
the one with the same name and the compatible type exists
in the variable/method scope (determined in Section 3.4).
Only when all of them have the corresponding ones in the
variable/method scope, this seed statement can become an
ingredient statement of the likely-buggy statement.

3.5.2 Type Matching Based Approach

As mentioned in Section 2.4.4, it could be demanding for a
seed statement to only access the variables/methods visible
at the location of the likely-buggy statement. Indeed, the
pattern of a seed statement can sometimes also be useful.

To exploit such patterns, the type matching based ap-
proach goes a step further compared to the direct approach.
When certain variables or methods extracted from a seed
statement cannot be found in the variable or method scope,
the type matching based approach does not discard this seed
statement immediately. Instead, it tries to map each variable
or method out of scope to one with the compatible type in
scope. To restrict the complexity, we follow three guidelines
in type matching: 1) Different variables/methods in a seed
statement must correspond to different ones in the scope; 2)
If there is more than one variable/method with a compatible
type, the one with the same type is preferred; 3) If there are
multiple variables with the same priority, we just randomly
choose one.

If the type matching is successful, the modified seed
statement will become an ingredient statement. Fig. 7 and
Fig. 8 illustrate how type matching works for variables and
methods respectively, using toy programs.

In Fig. 7, the statement at line 3 is faulty, and the bug
can be fixed by inserting y=-y before this statement. ARJA
cannot repair this fault without type matching since no such
fix ingredient exists in the current program. However, if
type matching is enabled, y=-y can be generated via a seed
statement p=-p, by mapping the variable p to y. Similarly, in
Fig. 8, the method fun is mapped to sub, and an ingredient
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Fig. 7. Illustration of the type matching for variables.

statement sub(x,-y) is generated via fun(x,-y), which
can be used to fix the bug at line 3.
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Fig. 8. Illustration of the type matching for methods.

3.6 Evolving Program Patches

Suppose that we have selected n likely-buggy statements
using the procedure in Section 3.2, and each of them has a
set of ingredient statements found by the method in Section
3.5. Thus, we have n modification points, each of which has
a likely-buggy statement and its corresponding ingredient
statements.

With the n modification points along with the available
operation types and a reduced set of JUnit tests (obtained
in Section 3.3), we can now encode a program patch as a
genome and evolve a population of such tentative patches
via multi-objective GP. The details are given as follows.

3.6.1 Solution Representation
To encode a patch, we first arrange the nmodification points
of a list in random order. For the j-th modification point,
where j = 1, 2, . . . , n, the corresponding set of ingredient
statements is denoted by Ij and the statements in Ij are also
ordered arbitrarily. Moreover, the set of operation types is
denoted by O and the elements in O are numbered starting
from 1. Note that the ID number for each modification point,
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each statement in Ij , or each operation type in O is fixed
throughout the evolutionary process.

In ARJA, we propose a new patch representation that
can decouple the search subspaces of likely-buggy locations,
operation types and ingredients perfectly. Specifically, each
solution can be represented as x = (b,u,v), which contains
three different parts and each part is a vector with size n.

1 n32 k… …

1 010 1… …

The 2nd modification 
point will not be edited

The k-th modification 
point is to be edited

… …

Fig. 9. Illustration of the first part (i.e., b) of the representation.

The first part, denoted by b = (b1, b2, . . . , bn), is a
binary vector with n bits bj (bj ∈ {0, 1}, j = 1, 2, . . . , n).
bj indicates whether or not the patch x chooses to edit the
likely-buggy statement in the j-th modification point. Fig. 9
illustrates the representation of b.

The second part, denoted by u = (u1, u2, . . . , un), is a
vector with n integers, where uj ∈ [1, |O|], j = 1, 2, , . . . , n.
uj means that the patch x chooses the uj-th operation type
in the set O for the j-th modification point. In Fig. 10, we
illustrate the representation of u.

1 n32 k… …

2 131 2… …

1:

2:

3:

Delete

Replace

Insert 

Set of operation 
types: O

… …

Fig. 10. Illustration of the second part (i.e., u) of the representation.

1 n32 k… …

5 263 8… …

1:

2:

3:

computeProperties();

plusList.add(other);

node = node.getMinus();

Set of ingredient statements for 
the 2nd modification point: I2

.

.

.

|I2|: minusList.add(other); 

1:

2:

w = w.negate();

return origin;

Set of ingredient statements for 
the k-th modification point: Ik

.

.

.

8: setFrame();

.

.

.

| Ik |: y = u.getY(); 

… …

Fig. 11. Illustration of the third part (i.e., v) of the representation.

Similar to u, the third part (i.e., v = (v1, v2, . . . , vn))
is also a vector with n integers, where vj ∈ [1, |Ij |], j =
1, 2, . . . , n. vj indicates that the patch x chooses the vj-th
ingredient statement in the set Ij for the j-th modification
point. Fig. 11 illustrates the representation of v.

As can be seen, bj , uj and vj together determine what
the patch x does to the j-th modification point. For example,

for the patch represented in Figs. 9, 10 and 11, it replaces the
likely-buggy statement in the k-th modification point with
setFrame(). Suppose the operation types in O are num-
bered as in Fig. 10, the whole procedure to apply a patch x
(i.e., the decoding procedure) is described in Algorithm 1.

Algorithm 1: The procedure to apply a patch x

Input: n modification points; the set of operation types O;
a patch x = (b,u,v).
Output: A modified program.

1 for j = 1 to n do
2 if bj = 1 then
3 st← the likely-buggy statement in the j-th

modification point;
4 if uj = 1 then
5 Delete st;

6 else
7 st∗ ← the vj-th ingredient statement in Ij ;
8 if uj = 2 then
9 Replace st with st∗;

10 else if uj = 3 then
11 Insert st∗ before st;

3.6.2 Population Initialization
For a specific problem, it is usually better to use the ini-
tialization strategy based on prior knowledge instead of
random initialization, which could help genetic search find
desirable solutions more quickly and easily.

In ARJA, we initialize the first part (i.e., b) of each solu-
tion by exploiting the output of fault localization. Suppose
suspj is the suspiciousness of the likely buggy statement in
the j-th modification point, then bj is initialized to 1 with
the probability suspj × µ and 0 with 1 − suspj × µ, where
µ ∈ (0, 1) is a predefined parameter. The remaining two
parts (i.e., u and v) of each solution are just initialized ran-
domly (i.e., uj and vj are initialized to an integer randomly
chosen from [1, |O|] and [1, |Ij |] respectively).

3.6.3 Fitness Evaluation
In ARJA, we formulate automated program repair as a
multi-objective search problem. To evaluate the fitness of a
solution x, we propose a multi-objective function to simulta-
neously minimize two objectives, namely patch size (denoted
by f1(x)) and weighted failure rate (denoted by f2(x)).

The patch size is given by Eq. (3), which indeed refers to
the number of edit operations contained in the patch.

f1(x) =
n∑

i=1

bi (3)

The weighted failure rate measures how well the modi-
fied program (obtained by applying the patch x) passes the
given tests. We can formulate it as follows:

f2(x) =
|{t ∈ Tf | x fails t}|

|Tf |
+ w × |{t ∈ Tc | x fails t}|

|Tc|
(4)

where Tf is the set of negative tests, Tc is the reduced set of
positive tests obtained through test filtering, and w ∈ (0, 1]
is a global parameter which can introduce a bias toward
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negative tests. If f2(x) = 0, x does not fail any test and
represents a test-adequate patch.

By simultaneously minimizing f1 and f2, we prefer test-
adequate patches of smaller size. Note that if the modified
program fails to compile or runs out of time when executing
the tests, we set both of the objectives to +∞. Moreover,
f1 = 0 is meaningless for program repair since no modifica-
tions are made to the orginal program. So, once f1 is equal
to 0 for a solution x, f1 and f2 are immediately reset to +∞,
forcing such solutions to disappear with elite selection.

3.6.4 Genetic Operators
The genetic operators (i.e., crossover and mutation) are exe-
cuted to produce offspring solutions in GP. To inherit good
traits from parents, crossover and mutation are applied to
each part of the solution representation separately.

For the first part (i.e., b), we use half uniform crossover
(HUX) and bit-flip mutation. As for both of the remaining
parts (i.e., u and v), we adopt single-point crossover and
uniform mutation, because of their integer encoding. Fig. 12
illustrates how crossover and mutation are executed on two
parent solutions. For brevity, only one offspring is shown in
this figure.

Intermediate
offspring 

Offspring

Parent 2

Parent 1

uniform 

mutation

uniform 

mutation

bit-flip 

mutation

single-point 

crossover

single-point 

crossover
HUX

cut pointcut point

1 1 1 0 1 2 1 3 6 1 2 4

0 1 1 1 2 1 3 2 2 3 5 3

0 1 1 0 1 1 3 2 6 1 5 3

0 1 1 0 1 1 3 2 6 1 5 3

single-point single-point 

0 1 0 0 1 3 3 2 4 1 5 3

mutation

Fig. 12. Illustration of crossover and mutation in ARJA.

3.6.5 Using NSGA-II
Generally, based on the proposed solution representation,
any MOEA can serve the purpose of evolving the patches
for a buggy program. In ARJA, we employ NSGA-II [21]
as the search algorithm, which is one of the most popular
MOEA.

The NSGA-II based search procedure for finding test-
adequate patches can be summarized as follows. First, an
initial population with N (the population size) solutions
is produced by using the initialization strategy presented
in Section 3.6.2. Then the algorithm goes into a loop until
the maximum number of generations is reached. In each
generation g, binary tournament selection [21] and the ge-
netic operators described in Section 3.6.4 are applied to the
current population Pg to generate an offspring population
Qg . Then the N best solutions are selected from the union
population Ug = Pg ∪ Qg by using fast non-dominated
sorting and crowding distance comparison (based on the
two objectives formulated in Section 3.6.3). The resulting N
best solutions constitute the next population Pg+1.

Finally, the obtained non-dominated solutions with f2 =
0 are output as test-adequate patches found by ARJA. If no
such solutions exist, ARJA fails to fix the bug.

3.7 Rule-Based Search Space Reduction

ARJA provides three types of rules that can be integrated
into its three different procedures (i.e., operation initializa-
tion, ingredient screening and solution decoding) respec-
tively. By taking advantage of these rules, we can not only
increase the chance of the modified program to compile suc-
cessfully, but also avoid some meaningless edit operations,
thereby reducing the search space.

Note that when the rules are integrated into ARJA, the
related procedures described in the previous subsections
will be modified as discussed next.

3.7.1 Customizing the Operation Types

The first type of rules are used to customize the operation
types for each modification point. Such rules are invoked
in the operation initialization procedure since they only
involve likely-buggy statements and the operation types.

1 n32 k… …

2 131 2… …

1:

2:

3:

Delete

Replace

Insert 

Set of operation 
types: O1

1:

2:

Replace

Insert

Set of operation 
types: Ok

… …

Fig. 13. Illustration of u for the purpose of customizing the operation
types.

For a modification point, certain operation types in O
may not be available according to the predefined rules.
Currently in ARJA, we provide two rules of this type
that are shown in Table 1. Suppose Oj is the set of avail-
able operation types for the j-th modification point, where
Oj ⊆ O, j = 1, 2, . . . , n. Fig. 13 illustrates the u vector for
the purpose of customizing the operation types. Unlike in
Fig 10, each modification point is associated with its own
set of operation types (i.e., Oj), and uj means that the patch
chooses the uj-th operation type in Oj (instead of O).

3.7.2 Further Filtering the Ingredients

The second type of rules concerns likely-buggy statements
and the ingredient statements, which are employed to fur-
ther filter the ingredient statements in an ingredient screen-
ing procedure. Such rules can help to remove undesirable
ingredients which pass the scope check of variables and
methods. For example, a continue statement does not
contain any variable or method invocation, but it can only be
used in a loop. Table 2 lists the rules of this type integrated
into ARJA, and also explains their rationale.

By applying these rules to Ij (obtained by the procedure
in Section 3.5), we can generate a reduced set I ′j where
I ′j ⊆ Ij . I ′j will become the set of ingredients for the j-
th modification point instead of Ij . To illustrate v in this
scenario, we can just replace Ij with I ′j in Fig. 11, with vj
then indicating that the patch chooses the vj-th ingredient
statement in I ′j .
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TABLE 1
The rules integrated in ARJA for customizing the operation types for each modification point

No. Rule rationale

1 Do not delete a variable declaration statement (VDS). Deleting a VDS is usually very disruptive to a program,
and keeping a redundant VDS usually does not influence
the correctness of a program.

2 Do not delete a return/throw statement which Avoid returning no value from a method that is not
is the last statement of a method not declared void. declared void.

TABLE 2
The rules integrated in ARJA for further filtering the ingredients for each modification point

No. Rule rationale

1 The continue statement can be used as the The keyword continue cannot be used out of a loop
ingredient only for a likely-buggy statement (i.e., for, while or do-while loop).
in the loop.

2 The break statement can be used as the The keyword break cannot be used out of a loop
ingredient only for a likely-buggy statement in (i.e., for, while or do-while loop) or a switch
the loop or in the switch block. block.

3 A case statement can be used as the ingredient The keyworkd case cannot be used out of a switch
only for a likely-buggy statement in a switch block, and the value for a case must be the same
block having the same enumerated type. enumerated type as the variable in the switch.

4 A return/ throw statement can be used as the Avoid returning/throwing a value with non-compatible
ingredient only for a likely-buggy statement in a type from a method.
method declaring the compatible return/throw type.

5 A return/ throw statement can be used as the Avoid the unreachable statements.
ingredient only for a likely-buggy statement that is
the last statement of a block.

6 A VDS can be used as the ingredient only for another Avoid using an edit operation with no effect on the
VDS having the compatible declared type and the program or disrupting the program too much.
same variable names.

TABLE 3
The rules integrated in ARJA for disabling certain specific operations

No. Rule rationale

1 Do not replace a statement with the one having Avoid using an edit operation with no effect
the same AST. on the program.

2 Do not replace a VDS with the other kinds of statements. Avoid disrupting the program too much.

3 Do not insert a VDS before a VDS. The same with No. 1.

4 Do not insert a return/throw statement before any Avoid the unreachable statements.
statement.

5 Do not replace a return statement (with return value) that is Avoid returning no value from a method
the last statement of a method with the other kinds of statements. that is not declared void.

6 Do not insert an assignment statement before an The same with No. 1.
assignment statement with the same left-hand side.

3.7.3 Disabling Certain Specific Operations

The third type of rules involve at least the operation types
and the ingredient statements. Such rules are used to ignore
certain specific edit operations when decoding a solution x
for fitness evaluation. Table 3 shows the rules of this type
integrated in ARJA together with their rationale.

With these rules, if bj = 1, the corresponding operation
on the j-th modification point will not be conducted imme-
diately as in Algorithm 1. Instead, we first check whether
this operation conforms to one rule listed in Table 3. Once
any of the rules is met, the operation will be disabled
(equivalent to resetting bj to 0).

4 EXPERIMENTAL DESIGN

This section explains the design of our experimental study,
including the research questions to be answered, the repair
systems involved, the datasets of bugs used, and the evalu-
ation protocol for comparing different repair approaches.

4.1 Research Questions

To conduct the general evaluation of ARJA, we seek to
answer the following research questions in this study.
RQ1: Does random search really outperform genetic search
in automated program repair?
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Previous work by Qi et al. [12] claimed that random
search outperforms GP in terms of both repair effectiveness
and efficiency. Their work targeted C programs and was
based on GenProg framework. We are interested in revisit-
ing this claim based on ARJA that targets Java programs.

RQ2: What are the benefits of formulating program repair
as a multi-objective search problem?

We would expect that the multi-objective formulation
described in Section 3.6.3 can help ARJA generate simpler
patches compared to a single-objective formulation. Besides
this, we investigate whether the multi-objective formulation
can provide other benefits.

RQ3: Is our proposed lower-granularity patch representa-
tion superior to that introduced by Oliveira et al. [20]?

In Section 2.4.1, we have analyzed the limitation of
Oliveira et al.’s patch representation. Here we want to
experimentally compare this representation with ours.

RQ4: Is ARJA better than state-of-the-art redundancy-based
repair methods in terms of fixing multi-location bugs?

As stated in Section 1, one prominent feature of GP based
repair approaches is that they have the potential to fix multi-
location bugs. ARJA is a new GP based repair system, thus
it is necessary to assess its superiority in this respect.

In RQs 1–4, our main concern is the search ability of ARJA
(including its variants) and other related repair methods
based on the redundancy assumption. So, here we only
use ARJA without type matching for the simplicity and fair
comparison. Moreover, all the involved approaches use the
same fault localization module.

RQ5: How useful is the type matching strategy when the fix
ingredients do not exist in the current buggy program?

Type matching can reasonably create ingredient state-
ments that do not appear in the buggy program. We in-
vestigate whether these newly generated ingredients can be
exploited effectively by ARJA to fix some bugs.

RQ6: How well does ARJA perform in fixing real-world
bugs compared to several selected repair approaches?

It is of major interest to address real-world bugs in
program repair. We need to know whether ARJA can work
on real-world bugs in large-scale Java software systems,
beyond fixing seeded bugs.

RQ7: To what extent can ARJA synthesize semantically
correct patches for real bugs?

Since the empirical work by Qi et al. [13], it has been
a hot question whether the patches generated by test-suite
based repair approaches are correct beyond passing the test
suite. We manually check the correctness of the patches
synthesized by ARJA in our experiments.

RQ8: Why can’t ARJA generate test-suite adequate patches
for some real bugs?

Sometimes, ARJA fails to find any test-suite adequate
patch. We examine several reasons for failure.

RQ9: How long is the execution time for ARJA on one bug?

The computational cost of one repair is also an important
concern for users. We want to see whether the repair cost of
ARJA is acceptable for practical use.

4.2 Repair Systems Under Investigation

There are mainly five repair systems involved in our exper-
iments, which are ARJA, GenProg [9], RSRepair [12], Kali
[13] and Nopol [35]. GenProg and RSRepair are selected
since they are typical search-based repair approaches. The
comparison of ARJA with them can demonstrate whether
the proposed multi-objective GP enables stronger search
ability, which is one of the major purposes of our study.
Kali is used since it is a baseline system and can detect
the weakness of test suites. Besides search-based repair
approaches, we also want to include a semantic-based ap-
proach for comparison. Nopol is eventually selected since
it is a representative approach of this kind and its source
code is publicly available with active maintenance. Note
that there are other well-known open-source repair tools,
such as SemFix [15] and Prophet [42], but they are designed
for C and cannot tackle Java bugs.

Our repair system, ARJA, is implemented with Java 1.7
on top of jMetal 4.5.3 jMetal [43] is a Java based framework
that includes a number of state-of-the-art EAs, particularly
MOEAs. It is used to provide computational search al-
gorithms (e.g., NSGA-II) in our work. ARJA parses and
manipulates Java source code using the Eclipse JDT Core4

package. The fault localization in ARJA is implemented with
Gzoltar 0.1.1.5 Gzoltar [44] is a toolset which determines
suspiciousness of faulty statements using spectrum-based
fault localization algorithms. Both coverage analysis and
test filtering in ARJA are implemented with JaCoCo 0.7.9,6

which is a Java code coverage library. For the sake of
reproducible research, the source code of ARJA is available
at GitHub.7 In addition, several ARJA variants have also
been implemented to answer different research questions.

RSRepair is a repair method that always uses the popu-
lation initialization procedure of GenProg to produce can-
didate patches. Kali generates a patch by just removing
or skipping statements. Strictly speaking, Kali cannot be
regarded as a “program repair” technique, but it is a very
suitable technique for identifying weak test suites or under-
specified bugs [7]. GenProg, RSRepair, and Kali were orig-
inally developed for C programs. According to the details
given in the corresponding papers [9], [12], [35], we carefully
reimplement the three systems for Java under the same in-
frastructure of ARJA. Our source code for the three systems
is publicly released along with ARJA.7 Note that a program
repair library named Astor [41] also provides the imple-
mentation of GenProg and Kali for Java, which are called
jGenProg and jKali respectively in the literature [7], [41]. In
addition, GenProg4J8 is a Java based version of GenProg
which is in active development. But to conduct controlled
experiments, we only use our own implementation, unless
otherwise specified.

3jMetal, http://jmetal.sourceforge.net
4Eclipse JDK Core, https://www.eclipse.org/jdt/core/index.php
5Gzoltar, http://www.gzoltar.com. The version 0.1.1 cannot local-

ize the faults in a constructor. So when repairing some bugs in Defects4J
that are located in a constructor, we switch to the version 1.6.2 although
the new version appears much more computationally intensive

6JaCoCo, http://www.eclemma.org/jacoco
7ARJA, https://github.com/yyxhdy/arja
8GenProg4J, https://github.com/squaresLab/genprog4java
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Nopol is a state-of-the-art semantic-based repair method
for fixing conditional statement bugs in Java programs. The
code of Nopol9 has been released by the original authors.

4.3 Datasets of Bugs

In our experiments, we use both seeded bugs and real-world
bugs to evaluate the performance of repair systems.

To answer RQs 6–9, we adopt a dataset consisting of four
open-source Java projects (i.e., JFreeChart,10 Joda-Time,11

Commons Lang, and Commons Math) from Defects4J [19].
Defects4J12 has been a popular database for evaluating Java
program repair systems [7], [45]–[48], because it contains
well-organized real-world Java bugs. Table 4 shows the
basic information of the 224 real-world bugs considered in
Defects4J, where the number of lines of code and the num-
ber of JUnit tests are extracted from the latest buggy version
of each project. Note that Defects4J indeed contains another
two projects, namely Closure Compiler13 and Mockito14.
Following the practice in [7], [46], [47], we do not consider
the two projects in the experiments. Closure Compiler is
dropped since it uses the customized testing format rather
than the standard JUnit tests; Mockito is ignored because it
is a very recent project added into the Defects4J framework
and its related artifacts are still in an unstable phase.

TABLE 4
The descriptive statistics of 224 bugs considered in Defects4J

Project ID #Bugs #JUnit Tests Source Test
KLoC KLoC

JFreeChart C 26 2,205 96 50
Joda-Time T 27 4,043 28 53

Commons Lang L 65 2,295 22 6
Commons Math M 106 5,246 85 19

Total 224 13,789 231 128

To address RQs 1–4, we use a dataset of seeded bugs
rather than Defects4J. We think that Defects4J is not well
suited to the purpose of distinguishing clearly the search
ability of the repair systems considered. The reasons are
listed as follows:

1) Many bugs (e.g., C2, L4 and M12) in Defects4J cannot
be localized by state-of-the-art fault localization tools
(e.g., Gzoltar). In such a case, fault localization rather
than the search is responsible for the failure.

2) Although existing empirical studies [17], [18] validated
the redundancy assumption by examining a large num-
ber of commits (16,071 in [17] and 15,723 in [18]),
Defects4J contains a relatively small number of bugs
and it may not conform well to this general assumption.
Indirect evidence is that jGenProg can find patches for
only 27 out of 224 bugs in Defects4J, as reported by
Martinez et al. [7]. In such a case, it is the inadequate
search space that matters, rather than the search ability.

9Nopol, https://github.com/SpoonLabs/nopol
10JFreeChart, http://www.jfree.org/jfreechart
11Joda-Time, http://www.joda.org/joda-time
12Defects4J, https://github.com/rjust/defects4j
13Closure Compiler, https://github.com/google/closure-compiler
14Mockito, http://site.mockito.org

3) As indicated in [7], among 27 bugs fixed by GenProg,
20 bugs can also be fixed by jKali. This means that for
the overwhelming majority of these bugs, the search
method can find a trivial patch (e.g., deleting a state-
ment) that fulfills the test-suite by just focusing on a
very limited search space. So, evaluation on such bugs
cannot truly reflect the difference between redundancy-
based repair methods in exploring a huge search space
of potential fix ingredients.

The dataset of seeded bugs for RQs 1–4 are generated
by the following procedures. First, we select the correct
version of M85 as a target program, since it has a moderate
number (i.e., 1983) of JUnit tests. Then, we randomly select
k redundant15 statements from two Java files (i.e., NormalD-
istributionImpl.java and PascalDistributionImpl.java). Last,
we produce a buggy program by performing statement-
level mutation (i.e., deletion, replacement or insertion) to
each of the k statements. Note that not every buggy program
obtained in this way is a suitable test bed, we choose some
of them according to the following principles:

1) The fault localization technique can identify all the
faulty locations of the seeded bug. This rules out the
influence of fault localization.

2) Any nonempty subset of the k mutations should make
at least one test fail. Generally, this ensures that the
seeded bug is a multi-location bug when k > 1.

3) Kali cannot generate any test-suite adequate patch for
the seeded bug. This challenges the search ability in
finding nontrivial or complex repairs.

We vary k from 1 to 3 and finally collect a dataset
containing 13 bugs of this kind, denoted by F1–F13. Among
the 13 bugs, k is set to 1 for F1 and F2, 2 for F3–F9, and 3
for F10–F13. So all bugs except F1 and F2 are multi-location
bugs. Because the mutated statements are redundant, the
redundancy-based repair systems (e.g., GenProg and RSRe-
pair) can fix any bug in this dataset, assuming that their
search ability is strong enough. Note that the bugs with
larger k values usually pose greater challenges since fix
ingredients for more buggy locations need to be searched.
Here we only consider k ≤ 3 to restrict the complexity.

For RQ5, we use a similar method to generate a dataset
of seeded bugs. The difference is that among the k state-
ments to be mutated, at least one is non-redundant. So,
it is expected that the redundancy assumption does not
completely hold for such bugs, which can be used to verify
the effectiveness of the type matching strategy. We set k to 2
and collect 5 bugs in this category, denoted by H1–H5.

To facilitate experimental reproducibility, we make the
two datasets of seeded bugs available on GitHub as well.16

4.4 Evaluation Protocol

In our experiments, we always use “Package” as the in-
gredient mode in ARJA, GenProg, and RSRepair, although
there exist two other alternatives as introduced in Section
3.5. To reduce the search space, we integrate all three types
of rules (see Section 3.7) into ARJA. When investigating RQs

15Here “redundant” means that the same statement can be found
otherwhere in the current package.

16Seeded bugs, http://github.com/yyxhdy/SeededBugs
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1–4, the direct approach (see Section 3.5.1) is used in ARJA
for ingredient screening.17 To save computational time, we
employ the test filtering procedure (see Section 3.3) in all
repair approaches implemented by ourselves (i.e., ARJA,
GenProg, RSRepair, and Kali).

TABLE 5
The parameter setting for ARJA in the experiments

Parameter Description Value

N Population size 40
G Maximum number of generations 50
γmin Threshold for the suspiciousness 0.1
nmax Maximum number of modification points 40
µ Refer to Section 3.6.2 0.06
w Refer to Section 3.6.3 0.5
pc Crossover probability 1.0
pm Mutation probability 1/n

Table 5 presents the basic parameter setting for ARJA in
the experimental study, where n is the number of modifi-
cation points determined by γmin and nmax together (see
Section 3.2). To ensure a fair comparison, parameters N ,
G, γmin and nmax in GenProg and RSRepair are set to
the same values as shown in Table 5. The global mutation
rate in GenProg and RSRepair is set to 0.06 since it is
similar to parameter µ in ARJA. Corresponding to w = 0.5,
negative tests are weighted twice as heavily as positive tests
in fitness evaluation of GenProg and RSRepair. Each trial
of ARJA, GenProg and RSRepair is terminated after the
maximum number of generations is reached. Moreover, in
Kali, we also use γmin and nmax to restrict the number of
modification points considered. Their values are set to 0.1
and 40 respectively. Note that different parameter settings
(e.g., population size) may influence the performance of
ARJA, but parameter tuning would be very computationally
expensive. In our experiments, we use the common settings
based on GenProg and NSGA-II. Even with this basic setting
we have already achieved promising results. Parameter
tuning will be investigated in the future work.

ARJA, GenProg, and RSRepair are all stochastic search
methods. To compare their search ability properly, each of
these algorithms performs 30 independent trials for each
seeded bug considered in RQs 1–5. There are several metrics
involved for evaluating the search performance, which are
explained as follows:

1) “Success”: the number of trials that produce at least one
test-suite adequate patch among 30 independent trials.
This is regarded as the primary metric.

2) “#Evaluations” and “CPU (s)”: the average number of
evaluations and the average CPU time needed to find
the first test-suite adequate patch in a successful trial.

3) “Patch Size”: the average size of the smallest test-suite
adequate patch obtained in a successful trial. Here
“size” means the number of edits contained in a patch.

4) “#Patches”: the average number of different test-suite
adequate patches found in a successful trial. Note that
we may obtain test-suite adequate patches with various
sizes in a trial, this metric only counts the number of

17Hereafter, if “ARJA” represents a specific algorithm, it refers to
the version that uses the direct approach for ingredient screening. The
ARJA variants using type matching will be differentiated by subscripts

those with the smallest size. Moreover, the difference
between patches here is judged in terms of syntactics
rather than semantics.

To test the difference for statistical significance, we con-
duct the 1-sided t-tests at a 5% significance level on the
assessment results obtained by two competing algorithms.
Significantly better results are marked with “†”.

Following the practice in [7], we perform only one trial
of ARJA, GenProg, and RSRepair for most of real-world
bug considered in RQ6, in order to keep experimental time
acceptable. However, we note that multiple trials are needed
to rigorously assess the performance of ARJA, GenProg,
and RSRepair due to their stochastic nature. We discuss this
important threat to validity in Section 7.

Our experiments were all performed in the MSU High
Performance Computing Center.18 We use 2.4 GHz Intel
Xeon E5 processor machines with 20 GB memory.

5 EXPERIMENTAL RESULTS ON SEEDED BUGS

This section presents our experimental results on seeded
bugs in order to address RQs 1–5 set out in Section 4.1.

5.1 Genetic Search vs. Random Search (RQ1)
To compare the performance of genetic search with ran-
dom search under the ARJA framework, we implemented
an ARJA variant denoted as ARJAr . The only difference
between ARJA and ARJAr lies in that ARJAr always uses
the initialization procedure of ARJA to generate candidate
solutions and does not use the genetic operators described
in Section 3.6.4. So, ARJAr purely depends on the random
search and there is no cumulative selection. The relationship
between ARJA and ARJAr is similar to that between Gen-
Prog and RSRepair. For a fair comparison, ARJAr also uses
the parameters shown in Table 5 (excluding pc and pm).

Table 6 compares ARJA and ARJAr on F1–F13 in terms of
the metrics “Success” and “#Evaluations”. In this table, the
meaning of k can be referred to in Section 4.3 and |Tf | is the
number of negative tests that trigger the bug. For brevity,
the two columns will be omitted later in Tables 7 and 9.

As can be seen from Table 6, on all the bugs considered
except F2 and F5, ARJA achieves a much higher success
rate and also requires less number of evaluations to find a
repair compared to ARJAr. Moreover, ARJA is much more
effective than ARJAr in synthesizing multi-line patches. For
example, on each of F10–F13 which need at least three edit
operations, ARJAr cannot find any test-suite adequate patch
in any of the 30 trials, whereas ARJA still maintains good
performance and succeeds in the majority of trials. For the
bug F5, ARJAr appears more efficient since it can find a
repair more quickly, but its repair success rate is very low
(3 out of 30) and it is therefore not reliable. In contrast
to ARJAr, ARJA can always succeed in fixing the bug
F5. As for F2, ARJAr performs slightly better than ARJA.
The possible reason is that the fix of F2 only requires one
insertion operation and ARJAr focuses more on a search
space containing such simple repairs.

In summary, ARJA significantly outperforms ARJAr in
terms of both repair effectiveness and efficiency, particularly

18MSU HPCC, https://wiki.hpcc.msu.edu/display/hpccdocs
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TABLE 6
Comparison between genetic search and random search within

the ARJA framework. (Average over 30 runs)

Bug
Index k |Tf |

Success1 #Evaluations1

ARJA ARJAr ARJA ARJAr

F1 1 3 30† 10 297.67† 507.60
F2 1 4 17 19 492.71 392.32
F3 2 4 26† 3 494.24 668.00
F4 2 6 13† 0 746.54† –
F5 2 8 30† 3 384.63 111.00
F6 2 4 30† 1 624.80 1229.00
F7 2 3 25† 0 698.52† –
F8 2 6 29† 4 376.21 505.50
F9 2 2 6† 0 1028.00† –

F10 3 6 18† 0 936.11† –
F11 3 6 20† 0 777.70† –
F12 3 8 28† 0 742.04† –
F13 3 4 20† 0 762.30† –

1 The metrics used in Tables 6–10, 12 are defined in Section 4.4
“–” means the data is not available.
“†” means the result is significantly better.

on multi-location bugs, which indicates that genetic search
is indeed more powerful than random search in automated
program repair.

Note that our conclusion here contradicts that drawn
by Qi et al. [12]. This can be attributed to the fact that
the two studies are based on different algorithmic frame-
works and different subject programs. In [12], GenProg and
RSRepair were compared on 24 C bugs from the GenProg
benchmark. As pointed out in [13], almost all the patches
reported by GenProg and RSRepair for these 24 bugs are
equivalent to a single functionality deletion modification.
When searching such trivial repairs, the crossover operator
in GenProg will become ineffective. The main reason is that
GenProg crossover works on the high-granularity edits (as
mentioned in Section 2.4.1) and produces a new patch just
by combining the edits from two parent solutions without
creating any new material. But it is clear that the recombina-
tion of existing edits will not be helpful to find a patch that
contains only a single edit. In addition, because RSRepair
always uses the initialization procedure of GenProg, it has
a very high chance to generate patches with only one
edit when using a small global mutation rate (e.g., 0.06).
Whereas in GenProg, the new edits will be appended to
the existing patch, which means that GenProg intends to
explore larger patches during the search. Nevertheless, this
search characteristic of GenProg may make it less efficient
than RSRepair in finding trivial patches that are test-suite
adequate for the bugs considered in [12]. We speculate that
GenProg will outperform RSRepair in terms of generating
nontrivial or complex repairs.

5.2 Multi-Objective vs. Single-Objective (RQ2)

To show the benefits of the multi-objective formulation,
we develop an ARJA variant denoted as ARJAs, which
only minimizes the weighted failure rate (see Eq. (4)). To
serve the purpose of single-objective optimization, ARJAs

uses a canonical single-objective GA instead of NSGA-II
to evolve patches. To ensure a fair comparison, the single-
objective GA also employs binary tournament selection and

the genetic operators introduced in Section 3.6.4, and the
parameter setting of ARJAs is the same with that of ARJA.

TABLE 7
Comparison between multi-objective and single-objective
formulations within the ARJA framework. (Average of 30

runs)

Bug
Index

Success Patch Size #Patches

ARJA ARJAs ARJA ARJAs ARJA ARJAs

F1 30† 26 2.00† 3.04 16.50† 1.73
F2 17 13 1.35† 2.85 10.94† 1.54
F3 26† 4 2.12† 3.25 4.00 1.00
F4 13 10 2.23† 4.50 5.92† 1.40
F5 30 30 2.67 2.50 7.23† 4.27
F6 30 28 2.80† 3.86 9.77† 1.61
F7 25† 11 2.24† 5.91 6.00 1.27
F8 29† 22 2.14† 4.23 7.76† 1.50
F9 6† 0 2.33† – 2.50† –
F10 18† 11 3.00† 4.45 3.22† 1.09
F11 20 18 3.00† 6.11 3.20† 1.17
F12 28† 15 3.07† 4.07 6.61† 1.80
F13 20 15 3.15† 5.47 4.60† 1.27

“–” means the data is not available.
“†” means the result is significantly better.

In Table 7, we present the comparative results between
ARJA and ARJAs on bugs F1–F13, where the metrics “Suc-
cess”, “Patch Size” and “#Patches” are considered. As ex-
pected, ARJA can really generate test-suite adequate patches
that contain smaller number of edits. The only exception
is F5, where the patch sizes obtained by ARJA and ARJAs

have no obvious difference. Moreover, it can be seen that
the average patch size obtained by ARJA is usually very
close to the corresponding k value (see Table 6) of the
bug, demonstrating the effective minimization of f1 (see Eq.
(3)) by NSGA-II. According to “#Patches”, for every bug,
ARJA can find notably more different test-suite adequate
patches than ARJAs in a successful trial, which is expected
to provide more adequate choice for the programmer.

More interestingly, in terms of “Success” metric, we
find that ARJA also clearly outperforms ARJAs. Consid-
ering that this metric only concerns the weighted failure
rate (f2 formulated in Eq. (4)), our results suggest that
the simultaneous minimization of f1 and f2 promotes the
minimization of f2 significantly. So, in the sense of search
or optimization, f1 can be seen as a helper objective in
our multi-objective formulation of program repair. A similar
phenomenon was also observed by some previous studies
[49]–[51] on other applications, which is formally termed as
multi-objectivization [49] in the literature. One possible reason
for this improvement is that a helper objective can guide the
search toward solutions containing better building blocks
and helps the search to escape local minima [50].

To sum up, the multi-objective formulation helps to find
simpler repairs (containing smaller number of edits) and
also helps to find more of them. Furthermore, the multi-
objective formulation can facilitate more effective search of
test-suite adequate patches compared to the single-objective
formulation. It is worth pointing out that GenProg [4] mini-
mizes the patch size via a post-processing delta debugging.
In the future work, it would be interesting to further exam-
ine how ARJA performs in terms of simple patches when
compared to this post-processing procedure.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

5.3 Comparison of Patch Representations (RQ3)

To compare between patch representations, we implement
another ARJA variant denoted as ARJAo, which differs from
ARJA only in that it uses the patch representation and
associated genetic operators introduced in [20] instead of
those presented in Sections 3.6.1 and 3.6.4. In ARJAo, we use
a crossover operator called OP1SPACE since it shows the
best overall performance among the three ones proposed by
Oliveira et al. [20]. For a fair comparison, ARJAo also uses
the basic parameter setting in Table 5.

TABLE 8
Comparison between patch representations within the ARJA

framework. (Average over 30 runs)

Bug
Index k |Tf |

Success #Evaluations

ARJA ARJAo ARJA ARJAo

F1 1 3 30 29 297.67† 842.07
F2 1 4 17 11 492.71† 1058.64
F3 2 4 26 30† 494.24† 745.70
F4 2 6 13† 6 746.54† 1480.83
F5 2 8 30 29 384.63† 628.93
F6 2 4 30† 23 624.80† 1180.00
F7 2 3 25† 18 698.52† 1259.50
F8 2 6 29 29 376.21† 683.76
F9 2 2 6 5 1028.00 1387.80
F10 3 6 18† 0 936.11† –
F11 3 6 20† 2 777.70† 1613.50
F12 3 8 28† 5 742.04 1093.00
F13 3 4 20† 0 762.30† –

“–” means the data is not available.
“†” means the result is significantly better.

Table 8 compares ARJA with ARJAo on bugs F1–F15,
where the metrics “Success” and “#Evaluations” are con-
sidered. Compared to ARJAo, ARJA achieves significantly
lower success rate only on bug F3, and always finds the first
repair with fewer evaluations. It is interesting to note that
the performance gap between ARJA and ARJAo on bugs
with k = 3 is much larger than that on others. This implies
that the search ability of ARJAo becomes weaker if more
complex repairs are required to be found. A possible reason
is that the destructive edits resulting from the OP1SPACE
crossover hinder ARJAo from maintaining a longer list of
genes that is potentially useful.

5.4 Strength in Fixing Multi-Location Bugs (RQ4)

Most existing program repair systems (e.g., Nopol) in the lit-
erature can only generate single point repairs. GenProg and
RSRepair are two state-of-the-art repair approaches that can
target multi-location bugs. To assess the strength of ARJA
in multi-location repair, we compare it with GenProg and
RSRepair on the bugs F3–F13. F1 and F2 are not considered
here since they belong to single-location bugs.

Note that ARJA does not take advantage of GenProg
and RSRepair when comparing them on F3–F13, because all
three approaches are based on the redundancy assumption
and the fix ingredients of F3–F13 exist in their search space.

Table 9 shows the comparative results of ARJA, GenProg
and RSRepair on F3–F13. As can be seen, ARJA outperforms
both GenProg and RSRepair on all the considered bugs in
terms of success rate. Indeed, on most of these bugs, ARJA

achieves a much higher success rate than its counterparts.
Compared to GenProg and RSRepair, ARJA also generally
requires much smaller number of evaluations to find a
repair. Although GenProg achieves better “#Evaluations” on
F9, the metric is computed only based on a single successful
trial. Given that ARJA does more than GenProg and RSRe-
pair in one fitness evaluation, we also report the results
of “CPU (s)” to provide another reference for comparing
the efficiency of the approaches. It can be seen that the
overall CPU time consumed by ARJA is comparable to that
by GenProg. Since RSRepair only fixes two bugs here with
very low success rate, we cannot rate its efficiency. In terms
of “Patch Size”, ARJA usually finds a much simpler repair
than GenProg. This could be explained by different search
mechanisms of GenProg and ARJA. GenProg considers
larger patches in each generation by appending new edits to
the existing patches. So once GenProg cannot find a repair
in the first few generations, it will usually obtain patches
that contain a relatively high number of edits. Different
from GenProg, ARJA prefers smaller patches throughout the
search process. In addition, we find that GenProg performs
significantly better than RSRepair on the multi-location
bugs considered, which corroborates our speculation from
Section 5.1.

In summary, ARJA exhibits critical superiority over two
prominent repair approaches (i.e., GenProg and RSRepair)
in fixing multi-location bugs.

5.5 Effect of Type Matching (RQ5)

To show the effect of the type matching, we introduce three
additional ARJA variants denoted as ARJAv , ARJAm and
ARJAb. They do not use the direct approach for ingredient
screening. Instead, ARJAv uses the type matching strategy
just for variables (illustrated in Fig. 7), ARJAm uses this
strategy for just methods (illustrated in Fig. 8), and ARJAb

conducts type matching for both variables and methods.
Table 10 compares ARJA (without type matching),

ARJAv , ARJAm and ARJAb on bugs H1–H5, where “Suc-
cess” is used as the comparison metric. From Table 10 we
can see that, ARJA cannot find any test-suite adequate patch
for all the bugs except H4, whereas ARJAv or ARJAb have a
good chance to fix these bugs. This indicates type matching
is a promising strategy that can help ARJA to fix some bugs
whose fix ingredients do not exist in the buggy program
considered. However, ARJAm does not perform very well
here, which may imply that type matching for methods
struggles to generate the fix ingredients for bugs H1–H3
and H5. Note that ARJA can fix bug H4, which means that,
in terms of semantics, the repair mode of H4 still follows the
redundancy assumption.

Although ARJAv and ARJAb perform much better over-
all than ARJA on these bugs, we note that they fail to
achieve a very high success rate, particularly on H1 and
H3. Considering that ARJAv and ARJAb indeed search over
a much larger space of ingredient statements than ARJA, a
possible reason is that the larger search space poses a serious
difficulty for the underlying genetic search. More CPU time
may help ARJAv and ARJAb to overcome this difficulty.

To sum up, the type matching strategy shows good
potential to generate useful ingredient statements. These
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TABLE 9
Comparison of ARJA, GenProg, and RSRepair on multi-location bugs. (Average of 30 runs)

Bug
Index

Success #Evaluations CPU (s) Patch Size

ARJA GenProg RSRepair ARJA GenProg RSRepair ARJA GenProg RSRepair ARJA GenProg RSRepair

F3 26 23 0 494.24 628.64 – 634.91 193.69† – 2.12† 3.09 –
F4 13† 2 0 746.54† 1240.50 – 980.77 1129.29 – 2.23† 6.50 –
F5 30† 11 4 384.63† 1235.30 1000.50 98.33 248.73 138.80 2.67 4.10 2.00†

F6 30† 11 0 624.80† 894.91 – 393.25 127.18† – 2.80† 7.09 –
F7 25† 4 0 698.52 820.00 – 461.89 186.60† – 2.24† 7.00 –
F8 29† 24 3 376.21† 915.21 1028.33 551.50 678.05 507.51 2.14 6.79 2.33
F9 6† 1 0 1028.00 225.00 – 962.62 52.15 – 2.33 2.00 –
F10 18† 2 0 936.11† 1896.00 – 190.01 280.70 – 3.00† 4.50 –
F11 20† 9 0 777.70† 1325.00 – 532.54 378.61 – 3.00† 11.33 –
F12 28† 15 0 742.04 973.73 – 566.57 273.59† – 3.07† 9.67 –
F13 20† 8 0 762.30† 1383.00 – 485.07 357.65 – 3.15† 14.88 –

“–” means the data is not available; “†” means the result is significantly better than the other two.

TABLE 10
Illustration of the type matching strategy (the metric “Success” is

reported in this table) (30 runs)

Bug
Index k |Tf | ARJA ARJAv ARJAm ARJAb

H1 2 6 0 2 0 0
H2 2 6 0 24 0 20
H3 2 5 0 4 0 3
H4 2 2 28 16 25 19
H5 2 7 0 17 0 13

new ingredients can be exploited by the genetic search to fix
bugs for which the redundancy assumption does not hold.
However, the much larger search space also challenges the
search ability of GP in the ARJA framework.

6 EXPERIMENTAL RESULTS ON REAL BUGS

This section presents our experimental results on real-world
bugs in order to address RQs 6–9 set out in Section 4.1.

6.1 Evaluation on Real-World Bugs (RQ6)
In this subsection, we conduct a large-scale experiment on
the Defects4J dataset, in order to show the superiority of the
proposed repair approaches in fixing real-world bugs. Our
experiment here is similar to that by Martinez et al. [7] but
involves a larger number of repair approaches. Specifically,
we consider ARJA along with its three variants (i.e., ARJAv ,
ARJAm and ARJAb), GenProg, RSRepair and Kali, which are
all implemented by ourselves under the same infrastructure.
Moreover, for our comparison purposes, we also include the
results of jGenProg, jKali and Nopol reported in [7] on the
same dataset. Note that the time-out for all three approaches
was set to three hours per repair attempt. According to
the experiments by Martinez et al. [7], a larger time-out
would not improve their effectiveness. The implemented
approaches generally need less than 1.5 hours to find the
first test-suite adequate patch (with very few exceptions)
and we use a CPU environment similar to the one used
in [7], so the comparison here is unlikely to favor our
implemented approaches.

Table 11 summarizes the results of the ten repair ap-
proaches on 224 bugs considered in Defects4J. For each

approach, we list the number of bugs fixed for each project.
The detailed bug indexes can be seen in the supplemental
material.19 From Table 11, ARJA is able to fix the highest
number of bugs among all the ten approaches, with a total
of 59, which accounts for 26.3% of all the bugs considered.
To our knowledge, none of the existing repair approaches in
the literature can synthesize test-suite adequate patches for
so many bugs on the same dataset.

1 // DateTimeZone.java
2 public long adjustOffset(long instant , boolean earlierOrLater) {
3 ...
4 instantAfter = FieldUtils .safeAdd(instantAfter, (( long)
5 hashCode()) ∗ ((long)
6 DateTimeConstants.MINUTES PER DAY));
7 return convertLocalToUTC(local, false, earlierOrLater ?
8 instantAfter : instantBefore) ;
9 }

Fig. 14. Test-suite adequate patch generated by ARJAb for the bug T17.

Although each of the three ARJA variants (using type
matching) searches over a superset of ARJA’s ingredient
space, they do not repair a higher number of bugs compared
to ARJA. The possible reason is that the search ability of
GP is still not strong enough to handle such a large search
space determined by type matching, which has also been
mentioned in Section 5.5. However, we note that the three
ARJA variants can fix few bugs that cannot be patched by
any redundancy-based repair approach (including ARJA)
in comparison. These bugs are T1, L13, L14 and M79 by
ARJAv ; L58, M44 and M79 by ARJAm; and T1, T17, L13, L14,
L21 and M7 by ARJAb. This demonstrates the effectiveness
of type matching on some real-world bugs. For instance,
only ARJAb synthesizes a test-suite adequate patch for T17,
which is shown in Fig. 14. The statement inserted (lines 4–
6 in Fig. 14) indeed does not exist in the buggy program
considered, whereas the following statement does

minutes = FieldUtils.safeAdd(minutes,
((long) getDays()) * ((long)
DateTimeConstants.MINUTES_PER_DAY));

19 http://github.com/yyxhdy/arja-supplemental
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TABLE 11
Results for 224 bugs considered in Defects4J with ten repair approaches. For each approach on each project, we report the number of bugs

where the test-suite adequate patches are found

Project ARJA ARJAv ARJAm ARJAb GenProg RSRepair Kali jGenProg1 jKali1 Nopol1

JFreeChart 9 8 10 8 7 7 7 7 6 6
JodaTime 4 3 4 5 3 3 3 2 2 1

Commons Lang 17 13 15 15 9 9 9 0 0 7
Commons Math 29 20 29 21 17 25 14 18 14 21

Total 59 44 58 49 36 44 33 27 22 35
(26.3%) (19.6%) (25.9%) (21.9%) (16.1%) (19.6%) (14.7%) (12.1%) (9.8%) (15.6%)

1 The results are organized according to those reported in [7].

But the variable minutes and the method getDays() in this
statement are both outside the scope of the faulty location.
ARJAb maps the variable minutes to instantAfter and
the method invocation getDays() to hashCode() through
type matching, thereby inventing a new statement. ARJAb

exploits GP to insert this new statement before line 7, which
allows the patched program to fulfill the given test suite.
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Fig. 15. Venn diagram of bugs for which test-suite adequate patches are
found.

Another three repair approaches implemented by our-
selves (i.e., GenProg, RSRepair and Kali) fix 36, 44 and
33 bugs respectively. To show their performance difference
with ARJA more clearly, Fig. 15(a) presents a Venn diagram
that shows the intersections of the fixed bugs among the
four approaches. As seen from Fig. 15(a), the overwhelming
majority of bugs handled by GenProg, RSRepair and Kali
can also be handled by ARJA; ARJA is able to fix 15 bugs
that neither GenProg, RSRepair nor Kali could fix; for 23
bugs, all the four repair approaches can generate a test-suite
adequate patch. Note that on the Defects4J dataset consid-
ered, RSRepair can synthesize test-suite adequate patches
for more bugs than GenProg. Further, we find that RSRepair
generates a patch containing only a single edit for 41 out of
44 fixed bugs. Recall that the search mechanism of RSRepair
is more suitable to find such very simple repairs than that of
GenProg, as discussed in Section 5.1. So, it is not surprising
that RSRepair shows a certain advantage over GenProg on
the bugs considered here.

From Fig. 15(b), ARJA is clearly superior to jGenProg
and jKali. Almost all the bugs repaired by jGenProg and
jKali can also be repaired by ARJA. ARJA also fixes a greater
number of bugs than Nopol, but their performance shows
good complementarity: ARJA and Nopol can handle 41 and
17 bugs, respectively, that cannot be handled by the peer.

Considering the randomness of stochastic algorithms
[52], we further statistically evaluate ARJA, GenProg and

RSRepair on 12 real bugs in Defects4J. The 12 bugs are
selected because they may require multiple edits according
to a single run of the three approaches, and thus may pose
a greater challenge to the search. Each repair approach
performs 30 random trials on each bug. Table 12 shows
the results, where |Tf | is the number of negative tests that
trigger the bug and the metric “Success” is reported for
comparison. From Table 12, ARJA significantly outperforms
both GenProg and RSRepair on all 12 bugs except L55 and
M60, which again confirms the stronger search ability of
ARJA compared to GenProg and RSRepair.

TABLE 12
Results for 12 real bugs with ARJA, GenProg and RSRepair

(the metric “Success” is reported in this table)

Bug Index |Tf | ARJA GenProg RSRepair

T15 1 23† 1 0
L20 2 30† 0 0
L35 2 18† 1 0
L41 2 25† 0 0
L46 1 14† 3 4
L50 8 30† 12 2
L55 1 30 29 14
L61 2 13† 4 0
M22 3 30† 0 0
M56 1 20† 5 3
M60 1 3 3 3
M98 2 30† 0 0

“†” means the result is significantly better than the others.

To summarize, ARJA and its variants have an obvious
advantage over the repair approaches evaluated in this
experiment in handling real bugs. We find that the ten repair
approaches considered in our experiment can synthesize a
test-suite adequate patch for 88 out of total 224 bugs. To pro-
vide a reference for future research, the patches generated
by our approaches are publicly available at GitHub.20

6.2 Patch Correctness (RQ7)
Because of a weak test suite used as oracle, a test-suite
adequate patch for certain bugs may be incorrect though
passing the given test suite, a condition called patch overfit-
ting [13], [53]. In this subsection, we manually evaluate the
correctness of the patches generated by ARJA.21 We regard
a test-suite adequate patch correct if it is exactly the same

20Defects4J patches, http://github.com/yyxhdy/defects4j-patches
21Due to limited manual effort, we currently do not consider the

correctness of the patches found by the other approaches in comparison
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as or semantically equivalent22 to a human-written patch.
Due to a lack of domain knowledge, we cannot confirm the
correctness of the patches for some bugs, and do not include
them in our manual assessment. To increase confidence, we
avoid complex semantic analysis and identify a patch as
correct only when we can provide detailed explanations that
can be acknowledged by an external researcher.

TABLE 13
The bugs for which the correct patches are synthesized by ARJA

Project Bug Index

JFreeChart C3, C5, C12

Joda-Time T15

Commons Lang L20, L35, L43, L45

Commons Math M5, M22, M39, M50, M53,
M58, M70, M73, M86, M98

Total 18

After careful analysis, we find that ARJA can synthesize
correct patches for at least 18 bugs in Defects4J, which
are shown in Table 13. These results are very encouraging.
This is because ARJA referred to here is also based on the
redundancy assumption like jGenProg, but jGenProg can
only correctly fix 5 bugs (as reported in [7]) which are also
correctly repaired by ARJA. Among the remaining 13 bugs,
jGenProg cannot even find a test-suite adequate patch for
11 of them. This again demonstrates the effectiveness of
the improved GP search in ARJA. Nopol can only correctly
fix 5 bugs (i.e., C5, L44, L55, L58 and M50), so ARJA also
shows superiority over Nopol in finding correct patches.
Furthermore, to our knowledge, only ARJA can generate
a correct patch for bugs C12, L20, M22, M39, M58, M86
and M98, whereas the other repair systems ever tested on
Defects4J cannot. Another highlight of ARJA is that it can
correctly fix some multi-location bugs in Defects4J, which
are hard to repair by the other repair methods.

To illustrate the expressive power, we conduct the case
studies of the bugs that are correctly repaired by ARJA. We
find that some of these repairs appear to be very interesting.

6.2.1 Case Study of Single-Location Bugs that are
Correctly Repaired by ARJA

Among the bugs correctly fixed by ARJA, 13 can be cate-
gorized as single-location bugs since ARJA is able to repair
them with only a single edit. Here we only take M58 and
M86 as examples.

1 // GaussianFitter.java
2 public double[] fit () {
3 final double[] guess = (new
4 ParameterGuesser(getObservations())).guess();
5 − return fit (new Gaussian.Parametric(), guess);
6 + return fit ((new ParameterGuesser(getObservations()))
7 + .guess()) ;
8 }

Fig. 16. Correct patch generated by ARJA for bug M58.

22Here it means two patched programs have the same functionality.

Fig. 16 shows the correct patch generated by ARJA
for M58. It is syntactically different from the human-
written patch that replaces the faulty statement (line 5)
with return fit(guess);. Nevertheless, the method pa-
rameter in the statement inserted by ARJA (lines 6–7) is
indeed equivalent to the variable guess according to the
variable declaration statement (lines 3–4), and we have con-
firmed that the method invocations ParameterGuesser,
getObservations and guess do not change anything out-
side the faulty method fit(). Thus the patch shown in Fig.
16 is semantically equivalent to the human-written patch.

1 // CholeskyDecompositionImpl.java
2 public CholeskyDecompositionImpl(...) {
3 for ( int i = 0; i < order; ++i) {
4 final double[] lI = lTData[i ];
5 if (lTData[i ][ i ] < absolutePositivityThreshold) {
6 throw new NotPositiveDefiniteMatrixException();
7 } ...
8 }
9 for ( int i = 0; i < order; ++i) {

10 final double[] ltI = lTData[i ];
11 + if (lTData[i ][ i ] < absolutePositivityThreshold) {
12 + throw new NotPositiveDefiniteMatrixException();
13 + }
14 ...
15 } ...
16 }

Fig. 17. Correct patch generated by ARJA for the bug M86.

In Fig. 17, we show the correct patch found by ARJA for
the bug M86. This bug occurs because the buggy program
fails to correctly check whether a symmetric matrix is pos-
itive definite (the Cholesky decomposition only applies to
the positive-definite matrix). The buggy program does such
a check using the if statement at line 5 in Fig. 17, which ex-
amines whether all diagonal elements are positive. However
this is only a necessary, though not sufficient, condition for
the positive definite matrix. The human-written patch first
deletes the if statement at line 5 and then inserts almost the
same if statement (lTData[i][i] is equivalently changed
to ltI[i]) before line 14, so that the validation of the
positive definitiveness is conducted correctly during the
decomposition process. Unlike the human-written patch,
the correct patch by ARJA does not delete the if statement
at line 5. Because this if statement states a necessary
condition, just keeping it intact would not influence the
correctness of the patched program.

6.2.2 Case Study of Multi-Location Bugs that are
Correctly Repaired by ARJA
The bugs L20, L35, T15, M22 and M98 are classified as
multi-location bugs, since ARJA fixes each of them correctly
using more than one edit. For M22 and M98, ARJA can
generate a correct patch that is exactly the same as the
human-written patch. As for the remaining three, ARJA
synthesizes semantically equivalent patches, which are an-
alyzed as follows. In Fig. 18, we present a correct patch
synthesized by ARJA for bug L20. The reason leading to
this bug is that even if array[startIndex] is not equal to
null, array[startIndex].toString() can still be null,
and array[startIndex].toString().length() would



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

1 // StringUtils . java
2 public static String join (Object[] array, char separator, int

startIndex, int endIndex) { ...
3 − StringBuilder buf = new StringBuilder((array[startIndex] ==
4 − null ? 16 : array[startIndex ]. toString () . length() ) + 1) ;
5 + StringBuilder buf = new StringBuilder(256);
6 ...
7 }
8 public static String join (Object[] array, String separator, int

startIndex, int endIndex) { ...
9 − StringBuilder buf = new StringBuilder((array[startIndex] ==

10 − null ? 16 : array[startIndex ]. toString () . length() ) +
11 − separator.length() ) ;
12 + StringBuilder buf = new StringBuilder(256);
13 ...
14 }

Fig. 18. Correct patch generated by ARJA for bug L20.

thereby cause the NullPointerException. A human de-
veloper fixes this bug by replacing two faulty statements
(lines 3–4 and lines 9–11 in Fig. 18) with the same statement
shown as follows:

StringBuilder buf = new
StringBuilder(noOfItems * 16);

We find that the initial capacity (e.g., noOfItems * 16 or
256) of StringBuilder has nothing to do with the correct-
ness but with the performance. If the the initial capacity is
too large, much unnecessary memory will be allocated; if
it is too small, StringBuilder will frequently expand its
capacity when accommodating additions, requiring more
computational time. But in terms of making the buggy
program functionally correct, the patch generated by ARJA
has no difference with the human-written patch.

Fig. 19 shows the correct patch found by ARJA for bug
L35. The buggy program fails to satisfy a desired behavior:
the method add(T[] array, T element) should throw
IllegalArgumentException when both parameters are
null. The only difference between the patch by ARJA and
the human-written patch lies in the detailed message of the
exception. However, this difference will not affect the ability
of the patched program by ARJA to meet the specified
functionality successfully.

1 // ArrayUtils.java
2 public static <T> T[] add(T[] array, T element) {
3 ...
4 − type = Object. class ;
5 + throw new IllegalArgumentException(”The Integer did not
6 + match any ...”) ;
7 ...
8 }
9 public static <T> T[] add(T[] array, int index, T element) {

10 ...
11 − return (T[]) new Object[] { null };
12 + throw new IllegalArgumentException(”The Integer did not
13 + match any ...”) ;
14 ...
15 }

Fig. 19. Correct patch generated by ARJA for bug L35.

ARJA fixes bug T15 correctly in an interesting way, as

shown in Fig. 20. This bug occurs when val1 and val2
are equal to Long.MIN_VALUE and -1 respectively. In this
scenario, the product should be -Long.MIN_VALUE. But
-Long.MIN_VALUE exceeds the maximum allowed value
(i.e., Long.MAX_VALUE) and the buggy program indeed
returns an incorrect overflow. To fix this bug, a human
developer just inserts the following if statement before line
5 in Fig. 20:

if (val1 == Long.MIN_VALUE) {
throw new

ArithmeticException("...overflows");
}

So in terms of the human-written patch, this bug can also be
regarded as a single-location bug. However, ARJA cannot
generate such a patch since the above if statement does
not exist anywhere in the buggy program. As shown in Fig.
20, the patch by ARJA first replaces line 5 with a break
statement to avoid returning an incorrect value there, then
it detects the overflow that triggers the bug in the new
if statement (lines 14–17) with the expression val1 ==
Long.MIN_VALUE && val2 == -1. Note that the boolean
expression val2 == Long.MIN_VALUE && val1 == -1 is
always false since val2 is an int value, so it has no effect
and can be ignored. As can be seen, the patch by ARJA
just does the same thing as the human-written patch in a
different way, and thus it is correct.

1 // FieldUtils . java
2 public static long safeMultiply(long val1, int val2) {
3 switch (val2) {
4 case −1:
5 − return −val1;
6 + break;
7 case 0: return 0L;
8 case 1: return val1;
9 }

10 long total = val1 ∗ val2;
11 − if ( total / val2 != val1) {
12 − throw new ArithmeticException(”...overflows”);
13 − }
14 + if ( total / val2 != val1 || val1 == Long.MIN VALUE &&
15 + val2 == −1 || val2 == Long.MIN VALUE && val1 == −1) {
16 + throw new ArithmeticException(”...overflows”);
17 + }
18 return total ;
19 }

Fig. 20. Correct patch generated by ARJA for bug T15.

6.2.3 Other Findings
Our manual study also provides other findings besides the
correct patches for some bugs.

We find that although the test-suite adequate patches for
a number of bugs (e.g., C1, C19, L7 and L16) may not be
correct, they present some similarities with corresponding
human-written patches. So these test-suite adequate patches
would still be useful in assisting the human developer to
create correct patches.

With stronger search ability, ARJA can identify more
under-specified bugs than previous repair approaches (e.g.,
jGenProg and jKali). For example, Martinez et al. [7] claimed
that the specification of the bug L55 by the test suite is
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good enough to drive the generation of a correct patch,
considering Nopol can repair this bug whereas jGenProg
and jKali cannot. However we find that L55 is also an under-
specified bug and an overfitting patch (shown in Fig. 21)
that simply deletes two statements can fulfill its test suite.

1 // StopWatch.java
2 public void stop() { ...
3 − stopTime = System.currentTimeMillis();
4 − this .runningState = STATE STOPPED;
5 }

Fig. 21. Test-suite adequate but incorect patch for bug L55.

We have also checked the correctness of the patches by
ARJA for seeded bugs and find that most of these test-
suite adequate patches are correct. Recalling that Kali cannot
uncover the weakness of the test suite for any seeded bug,
this implies that a stronger test suite would render ARJA
more able to generate correct patches. Several recent studies
[47], [48], [54] have started to explore the potential of test
case augmentation for program repair.

Moreover, we find that almost all the final multi-edit
patches produced by ARJA cannot be reduced by delta-
debugging to a single edit. The only exception is for bug L51.
This phenomenon can be well understood, because ARJA
explicitly minimizes the patch size during the search so that
delta-debugging in a post-processing step is not needed.

6.2.4 Summary

In summary, through careful manual assessment, we find
that ARJA can synthesize a correct patch for at least 18
bugs in Defects4J. To the best of our knowledge, some of
the 18 bugs have never been fixed correctly by existing
repair systems in the literature. Furthermore, ARJA is able
to generate correct patches for several multi-location bugs,
which is impossible for most of the other repair approaches.

Note that we do not focus on the number of correctly re-
paired bugs on the Defects4J dataset when comparing ARJA
with other approaches that are not based on the redundancy
assumption (e.g., Nopol). Nowadays, it is common knowl-
edge that different kinds of repair techniques can be better at
addressing different classes of bugs. For example, although
Nopol that targets conditional statement bugs can only fix 5
bugs correctly on the same dataset [7], 3 of them cannot be
repaired correctly by ARJA. So the number of correct fixes
by different categories of repair techniques would strongly
depend on how the dataset tested was built [14]. Also, we
cannot expect that the 224 bugs in Defects4J can truly reflect
the natural distribution of real-world bugs. For instance,
Defects4J indeed contains a considerable number of null
pointer bugs, so it may favor those approaches that can
explicitly conduct null pointer detection with fix templates
(e.g., PAR [55] and ACS [46]). Compared to such approaches,
ARJA is a more generic repair approach.

In contrast, ARJA and jGenProg can be compared mean-
ingfully on the Defects4J dataset in terms of the number of
bugs fixed or correctly fixed, because both of them typically
belong to redundancy-based repair techniques and use GP
to explore the search space. ARJA performs much better

than jGenProg, which clearly validates the improvement of
GP search in ARJA.

To facilitate re-examination by the other researchers, we
provide a detailed explanation of the correctness for each
correct patch generated by ARJA, publicly available in the
supplemental material.19

6.3 Reasons for Failure (RQ8)

As seen from the experimental results, ARJA and its variants
sometimes fail to find a test-suite adequate patch for some
bugs. We find that there are three possible reasons for
failure, which are discussed in the following.

The first reason is that fix ingredients for the bug do not
exist in the search space of the proposed repair approach.
In this case, no matter how powerful the underlying genetic
search is, ARJA (or its variants) will definitely fail to fix the
bug. The failure of ARJA on many bugs such as T1 and M1
may be attributed to this reason.

The second reason is that although test-suite adequate
(or even correct) patches exist in the search space, the search
ability of GP is still not strong enough to find it within the
required number of generations. An example is the failure
of ARJA on the real bug L53. Fig. 22 shows a human-
written patch for this bug. We find that ARJA takes into
account lines 10 and 18 as potentially faulty lines by fault
localization. So, a correct patch within the search space of
ARJA consists of the following two edits: 1) insert the if
statement located at line 6 before line 10; 2) insert the if
statement located at line 14 before line 18. This patch is
semantically equivalent to the human-written patch shown
in Fig. 22. However, we note ARJA fails to find it under the
parameter settings of our experiment. This may be because
the genetic search is easily trapped in local optima when
navigating the search space corresponding to L53.

1 // DateUtils.java
2 private static void modify(Calendar val, int field , boolean

round) { ...
3 if (! round || millisecs < 500) {
4 time = time − millisecs ;
5 + }
6 if ( field == Calendar.SECOND) {
7 done = true;
8 }
9 − }

10 int seconds = val.get(Calendar.SECOND);
11 if (! done && (!round || seconds < 30)) {
12 time = time − (seconds ∗ 1000L);
13 + }
14 if ( field == Calendar.MINUTE) {
15 done = true;
16 }
17 − }
18 int minutes = val.get(Calendar.MINUTE);
19 ...
20 }

Fig. 22. Human-written patch for bug L53.

The last reason is that ARJA fails to consider the faulty
lines that trigger the bug in the computational search, which
can be further divided into the following three categories:
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1) The fault localization technique adopted in ARJA fails
to identify all faulty lines related to the bug of interest.
This applies to bugs C2, T9, L4, M12, M104, and so on.

2) Due to the inadequate accuracy of fault localization,
the faulty lines are given relatively low suspiciousness.
For example, Fig. 23 shows the human-written patch
for L10. We find that the suspiciousness for all these
faulty lines is less than 0.2, but the number of lines
with suspiciousness larger than 0.2 is more than 40 (i.e.,
nmax value in our experiments). Hence ARJA leaves out
faulty lines and fails to fix this bug.

1 // FastDateParser.java
2 private static StringBuilder escapeRegex(StringBuilder

regex ,...) {
3 − boolean wasWhite = false;
4 ...
5 − if (Character.isWhitespace(c)) {
6 − if (! wasWhite) {
7 − wasWhite = true;
8 − regex.append(”\\s∗+”);
9 − }

10 − continue;
11 − }
12 − wasWhite = false;
13 ...
14 }

Fig. 23. Human-written patch for bug L10.

3) The test suite is not adequate for the fault localization.
Bug M46 provides an example of such a scenario,
whose human written patch is shown in Fig. 24. We
find that the whole method starting from line 8 is not
covered by any negative test. So based on the current
test suite of M46, the coverage-based fault localization
technique, no matter how powerful, cannot identify line
10 as a potentially faulty line.

1 // Complex.java
2 public Complex divide(Complex divisor) throws

NullArgumentException { ...
3 if (divisor . isZero) {
4 − return isZero ? NaN : INF;
5 + return NaN;
6 } ...
7 }
8 public Complex divide(double divisor) { ...
9 if (divisor == 0d) {

10 − return isZero ? NaN : INF;
11 + return NaN;
12 } ...
13 }

Fig. 24. Human-written patch for bug M46.

Note that we can use simple strategies to alleviate the
issues mentioned in the second and the third categories.
For example, for bug L10, we just reset parameter nmax

to 80 and then run ARJA again. As a result, ARJA can
now find a test-suite adequate patch for L10 which simply
deletes the if statement at line 5 in Fig. 23. This patch is
semantically equivalent to the human written patch and is
thus correct. As for M46, we modify the JUnit test named
testScalarDivideZero as shown in Fig. 25. This JUnit test

(before modification) is originally a positive test, because
x.divide(Complex.ZERO) and x.divide(0) return the
same incorrect value (i.e., INF) due to the faults in lines
4 and 10 in Fig. 24, and because this test only checks
the equality rather than the individual values. We add a
statement (line 4 in Fig. 25) that can expose the fault at
line 10 in Fig. 24, and run ARJA again on M46 with the
modified test suite. As a result, ARJA can now fix this multi-
location bug and the patch obtained is exactly the same as
the human-written patch.

1 // ComplexTest.java
2 public void testScalarDivideZero() {
3 Complex x = new Complex(1,1);
4 + TestUtils .assertEquals(x.divide(0) , Complex.NaN, 0);
5 TestUtils .assertEquals(x.divide(Complex.ZERO),
6 x.divide(0) , 0) ;
7 }

Fig. 25. The modification of an associated JUnit test of M46.

6.4 Repair Efficiency (RQ9)

For industrial applicability of automated program repair, an
approach should fix a bug within a reasonable amount of
time. Table 14 presents time (in minutes) for generating the
first repair for the Defects4J bugs.

TABLE 14
Time cost of patch generation on Defects4J dataset

Repair
Approach

CPU Time (in minutes)

Min Median Max Average

Arja 0.73 4.70 63.73 10.02
Arjav 0.86 4.63 80.63 10.32
Arjam 0.86 4.67 37.85 10.49
Arjab 0.89 5.27 95.12 11.48
GenProg 0.61 8.43 83.06 16.20
RSRepair 0.87 6.23 238.93 17.88
Kali 0.89 2.38 48.05 6.58

The CPU time is measured on an Intel Xeon E5-2680 V4
2.4 GHz processor with 20 GB memory.

According to Table 14, the median and average time for
a successful repair by ARJA and its three variants is around
5 minutes and 10 minutes, respectively. However, maximal
CPU time can reach more than one hour. GenProg and
RSRepair are less efficient than ARJA and its variants, which
further underlines the superiority of the ARJA framework.
Kali is the most efficient on average, but it only considers
trivial patches.

In summary, the repair efficiency of ARJA and its vari-
ants compares favorably with that of existing notable auto-
matic repair approaches. Considering that ARJA consumes
about 10 minutes on average and one hour at most for a
repair in our experiments, we think that this efficiency is
generally acceptable for industrial use in light of the bug-
fixing time required by human programmers [56], [57].
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7 THREATS TO VALIDITY

In this section, we discuss three basic types of threats that
can affect the validity of our empirical studies.

7.1 Internal Validity

To support a more reasonable comparison, we reimple-
mented GenProg, RSRepair and Kali for Java under the
same infrastructure as ARJA. Although we faithfully and
carefully followed the details described in the correspond-
ing research papers during reimplementation, our imple-
mentation may still not perform as well as the original sys-
tems. There may even be bugs in the implemented systems
that we have not found yet. To mitigate this threat, we make
the code of the three systems available on GitHub for peer-
review. Note that although jGenProg has been widely used
as the the implementation of GenProg for Java [45]–[48], it
was not implemented by the original authors of GenProg,
thereby also potentially suffering from reimplementation
issues. According to our results, our implemented GenProg
indeed shows advantages over jGenProg.

In our experiments, we use the same parameter setting
for all bugs considered. There is a risk that the parameter
setting is poor for handling some bugs. Section 6.3 has
shown an example where the resetting of nmax can allow
ARJA to find a correct patch for bug L10. However it is not
realistic to select an ideal parameter setting for every repair
approach on every bug. We here use a uniform parameter
setting among the implemented repair approaches to ensure
a fair comparison.

Another internal threat to validity concerns the stochas-
tic nature of ARJA (including its variants), GenProg and
RSRepair. It is possible that different runs of these repair
approaches would obtain somewhat different results. We
run each of them only once on each of 224 bugs in Defects4J,
which may lead to an overestimation or underestimation
of their repair effectiveness on this dataset. However, our
experiments on the Defects4J dataset have already been
much larger in scale than those conducted by Martinez et
al. [7], since it involved a larger number of repair methods
(i.e., 7 methods) and repair trials (i.e., 1,568 trials).

7.2 External Validity

Our experimental results are based on both seeded bugs and
real-world bugs.

Although the seeded bugs F1–F15 are randomly pro-
duced, there still exists the possibility that the fitness land-
scapes corresponding to these bugs favor a certain kind of
search mechanism. So the evaluation on these bugs may
not reflect the actual difference in search ability between
different search strategies (i.e., multi-objective GP, single-
objective GP and random search).

For real-world bugs, we used 224 bugs of four Java
projects from Defects4J. However, it is not possible to expect
that such a number of bugs can fully represent the actual
distribution of defect classes and difficulties in the real
world. So the evaluation may not be adequate enough to
reflect the actual effectiveness of our repair techniques on
real-world bugs, and our results may also not generalize to
other datasets. However, Defects4J is known to be the most

comprehensive dataset of real Java bugs currently available,
and it has been extensively used as the benchmark for
evaluating Java program repair systems [7], [45]–[48].

7.3 Construct Validity
We manually analyze the correctness of the test-suite ade-
quate patches found by ARJA. Such a manual study is not
scientifically sound, although it has been an accepted prac-
tice [7], [13] in automated program repair. It may happen
that the analysts classify an incorrect patch as correct due
to a limited understanding of the buggy program. For ex-
ample, Martinez et al. [7] claimed that Nopol can synthesize
correct patches for bugs C5 and M50, but a recent study [47]
indicated that the generated patches are not really correct.
To reduce this threat, we carefully rechecked the correctness
of the identified correct patches and made the explanation,
why we believe they are correct, available online.

ARJA finishes a repair trial for a bug only when the
maximum number of generations is reached. So ARJA may
finally return multiple test-suite adequate patches (with the
same patch size) for a bug. In such a case, we examine the
correctness of all the patches obtained, and we deem ARJA
to be able to fix this bug correctly if at least one of these
patches is identified as correct. We confirm that ARJA out-
puts both correct and incorrect (i.e., only test-suite adequate)
patches for bugs C12, L43 and M22. So a strict criterion
for correctness would pose a threat to the validity of the
number of correct repairs by ARJA. However, we think it is
unrealistic to completely avoid the generation of incorrect
but test-suite adequate patches when program repair is
just based on a weak test suite. Possibly machine learning
techniques [42] can be used to estimate the probability of a
patch being correct, but this falls outside the scope of this
paper. Further, sometimes it is indeed very difficult to differ-
entiate the incorrect patches from correct ones. For example,
Fig. 26 shows a test-suite adequate patch found by ARJA
for bug L43. This patch is indeed incorrect but it is very
similar to the human-written patch that inserts next(pos);
before line 5 rather than line 4. Even an experienced human
programmer cannot easily recognize it as incorrect without
a deep understanding of the program specification. We still
think test-suite augmentation is a fundamental solution to
the patch overfitting problem.

1 // ExtendedMessageFormat.java
2 private StringBuffer appendQuotedString(...) { ...
3 + next(pos);
4 if (escapingOn && c[start] == QUOTE) {
5 return appendTo == null ? null : appendTo.append(QUOTE);
6 }
7 }

Fig. 26. Test-suite adequate patch found by ARJA for bug L43.

Unlike ARJA, jGenProg is terminated once the first test-
suite adequate patch is found, and the analysis of correct-
ness only targets this patch. This may lead to a bias toward
ARJA when comparing its number of correct fixes with
that of jGenProg. jGenProg may still have had the chance
to find a correct patch for certain bugs, had it not been
terminated immediately. However, we think such bias is
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minimal: Except for 5 bugs correctly fixed by both ARJA and
jGenProg, jGenProg could not find any patch for 11 out of
the remaining 13 bugs that are correctly repaired by ARJA.

8 RELATED WORK

The test-suite based program repair techniques can be
roughly divided into two main branches: search-based re-
pair approaches and semantics-based repair approaches. In
this section, we first list related studies about these two cate-
gories of approaches, then review the research on empirical
aspects of test-suite based repair.

8.1 Search-Based Repair Approaches

Search-based repair approaches generally determine a
search space that potentially contains correct repairs, and
then apply computational search techniques, such as a GA
or random search, to navigate the search space, in order to
find test-suite adequate patches.

JAFF. Arcuri and Yao [58] proposed the idea of using
GP to co-evolve the programs and unit tests, in order to fix
a bug automatically. Subsequently, Arcuri [59] developed a
research prototype, called JAFF, which models bug fixing as
a search problem and uses EAs to solve it. JAFF can only
handle a subset of Java and was evaluated on toy programs.

GenProg. GenProg is a prominent GP based program
repair system which was developed jointly by several re-
searchers [4], [8], [9], [33]. Le Goues et al. [9] presented
the latest GenProg implementation, where the patch rep-
resentation is used instead of the AST based representation
[4], [8], [33] in order to make GenProg scalable to large-
scale programs. It was reported in [9] that GenProg can
automatically repair 55 out of 105 bugs from 8 open-source
programs. Since our study is based on GenProg, a more
detailed description was given in Section 2.2.

Around the GenProg framework, a number of related
studies have been conducted in the literature. Fast et al.
[36] investigated two approaches (i.e., test suite sampling
and dynamic predicates) to enhancing fitness functions in
GenProg. Schulte et al. [60] applied GenPog to fix bugs
in x86 assembly and Java bytecode programs. Le Goues et
al. [61] investigated the choices of solution representation
and genetic operators for the underlying GP in GenProg.
Oliveira et al. [20] presented a low-granularity patch repre-
sentation and developed several crossover operators associ-
ated with this representation. Tan et al. [37] suggested a set
of anti-patterns to inhibit GenProg or the other search-based
methods from generating nonsensical patches.

Mutation-based repair. Debroy and Wong [62] proposed
to combine standard mutation operators (from the mutation
testing literature) and fault localization to fix bugs. This
method considers each possibly faulty location one by one
according to the suspiciousness metric, and mutates the
statement at the current location to produce potential fixes.

PAR. Kim et al. [55] proposed PAR, which leverages
fix patterns manually learned from human written patches.
Similar to GenProg, PAR also implements an evolutionary
computing process. But instead of using crossover and
mutation operators as in GenProg, PAR uses fix templates
derived from common fix patterns to produce new program

variants in each generation. Experiments on six Java projects
and a user study confirm that the patches generated by PAR
are often more meaningful than those by GenProg.

AE. Weimer et al. [63] proposed a deterministic repair
algorithm based on program equivalence, called AE. This
algorithm uses adaptive search strategies to control the
order in which candidate repairs and test cases are consid-
ered. Empirical evaluations showed that, AE can reduce the
search space by an order of magnitude when compared to
GenProg.

RSRepair. Qi et al. [12] presented RSRepair, which re-
places the evolutionary search in GenProg with random
search. Their experiments on 24 bugs of the GenProg bench-
mark suite indicate that random search performs more
effectively and efficiently than GP in program repair.

SPR. Long and Rinard [64] reported SPR, which adopts
a staged program repair strategy to navigate a rich search
space of candidate patches efficiently. SPR defines a set
of transformation schemas beforehand and uses the target
value search or condition synthesis algorithm to determine
the parameter values of the selected transformation schema.
Experimental results on 69 bugs from 8 open source appli-
cations indicate that SPR can generate more correct patches
than previous repair systems.

Prophet. Based on SPR, Long and Rinard [42] further
designed Prophet, a repair system using a probabilistic
model to rank candidate patches in the search space of SPR.
Given a training set of successful human patches, Prophet
learns model parameters via maximum likelihood estima-
tion. Experimental results indicate that a learned model
in Prophet can significantly improve its ability to generate
correct patches.

HistoricalFix. Le et al. [45] introduced a repair method
which evolves patches based on bug fix patterns mined from
the history of many projects. This method uses 12 kinds of
existing mutation operators to generate candidate patches
and determines the fitness of a patch by assessing its simi-
larity to the mined bug-fixing patches. Experimental results
on 90 bugs from Defects4J show that the proposed method
can produce good-quality fixes for more bugs compared to
GenProg and PAR.

ACS. Xiong et al. [46] reported ACS, a repair system
targeting if condition bugs. ACS decomposes the condition
synthesis into two steps: variable selection and predicate
selection. Based on the decomposition, it uses dependency-
based ordering along with the information of javadoc com-
ments to rank the variables, and uses predicate mining to
rank predicates. With a synthesized condition, ACS lever-
ages three fix templates to generate a patch. Experiments
show that ACS can successfully repair 18 bugs from four
projects of Defects4J.

Genesis. Long et al. [65] presented a repair system,
called Genesis, which can automatically infer code trans-
forms and search spaces for patch generation. Genesis was
tested on two classes of errors (i.e., null pointer errors and
out of bounds errors) in real-world Java programs.

Discussion of Differences. The major differences between
ARJA and GenProg were discussed in Section 2.4. To explore
the repair search space, PAR and HistoricalFix basically
employ the evolutionary search of GenProg, RSRepair uses
random search, and the other approaches listed above es-
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sentially use enumerative search. So in terms of the search
algorithm, the novel multi-objective GP with rule-based
search space reduction makes ARJA distinctly different from
these repair approaches. PAR, SPR and Prophet mutate the
buggy program according to predefined fix templates while
ARJA does this mainly by rearranging existing statements.
So PAR, SPR and Prophet may be better at fixing some
common bugs (e.g., null pointer error) while ARJA may
have an advantage in handling bug fixes that require more
complex program transformations. ACS and Genesis only
target specific kinds of bugs while ARJA is a generic ap-
proach. Moreover, to speed up the patch validation, AE and
RSRepair use test case prioritization techniques. However
such techniques cannot be used in ARJA since GP requires
fitness evaluation. ARJA conducts lightweight impact anal-
ysis to reduce the test suite instead of prioritizing test cases.

8.2 Semantics-Based Repair Approaches

Typically, the semantics-based repair approaches infer se-
mantic constraints from the given test cases, and then
generate the test-suite adequate patch through solving the
resulting constraint satisfaction problem, particularly the
SMT problem.

SemFix. Nguyen et al. [15] proposed SemFix, a pioneer-
ing tool for semantic-based program repair. SemFix first
employs statistical fault localization to identify likely-buggy
statements. Then, for each identified statement, it generates
repair constraints through symbolic execution of the given
test suite and solves the resulting constraints by an SMT
solver. SemFix targets faulty locations that are either a right
hand side of an assignment or a branch predicate, and was
compared to GP based methods on programs with seeded
as well as real bugs.

SearchRepair. Ke et al. [16] developed a repair method
based on semantic code search, called SearchRepair. This
method encodes a database of human-written code frag-
ments as SMT constraints on the input-output behavior
and searches the database for potential fixes with an input-
output specification. Experiments on small C programs
written by students showed that SearchRepair can generate
higher-quality repairs than GenProg, AE and RSRepair.

DirectFix. Mechtaev et al. [66] implemented a prototype
system, called DirectFix, for automatic program repair. To
consider the simplicity of repairs, DirectFix integrates fault
localization and patch generation into a single step by
leveraging partial maximum SMT constraint solving and
component-based program synthesis. Experimental com-
parison indicates that the patches found by DirectFix are
simpler and safer than those by SemFix.

QLOSE. D’Antoni et al. [67] formulated the quantitative
program repair problem, where the optimal repair is ob-
tained by minimizing an objective function combing several
syntactic and semantic distances to the buggy program. The
problem is an instance of maximum SMT problem and is
solved by an existing program synthesizer. The technique
was implemented in a prototype tool called QLOSE and was
evaluated on programs taken from educational tools.

Angelix, JFix. Mechtaev et al. [68] presented Angelix,
a semantic-based repair method that is more scalable than
SemFix and DirectFix. The scalability of Angelix attributes

to the new lightweight repair constraint (called an angelic
forest), which is independent of the size of the program
under repair. Experimental studies on the GenProg bench-
mark indicate that Angelix has the ability to fix bugs from
large-scale software and multi-location bugs. Angelix was
originally designed for C programs. Recently, Le et al. [69]
developed JFix which is an extension of Angelix for Java.

Nopol. Xuan et al. [35] proposed an approach, called
Nopol, for automatic repair of buggy conditional statements
in Java programs. Nopol employs angelic fix localization to
identify potential fix locations and expected values of if
conditions. For each identified location, it encodes the test
execution traces as a SMT problem and converts the solution
to this SMT into a patch for the buggy program. Nopol was
evaluated on 22 bugs in real-world programs.

S3. Le et al. [70] presented S3 which uses the methodol-
ogy of programming by examples to synthesize high-quality
patches. S3 was evaluated on 52 bugs in small programs and
100 bugs in real-world large programs, and experimental
results show that it can generate more high-quality repairs
than several existing semantic-based repair methods.

Discussion of Differences. SearchRepair leverages code
from an external code base while ARJA uses existing state-
ments in the buggy program or further leverages their syn-
tactic patterns to create new code. Similar to DirectFix, ARJA
also aims to look for simpler patches. DirectFix takes into ac-
count the simplicity of the repair via partial maximum SMT
constraint solving, while ARJA considers this by explicitly
minimizing the patch size in evolutionary multi-objective
optimization. Angelix and S3 generate multi-location repairs
by using the angelic forest while ARJA achieves it by lever-
aging the expressive power of GP. Moreover, Nopol mainly
focuses on synthesizing conditions to fix a bug while ARJA
is more general.

8.3 Empirical Aspects of Test-Suite Based Repair
Besides proposing new program repair methods, there is
another line of research that focuses on the empirical aspects
of test-suite based repair.

Patch maintainability. Fry et al. [71] presented a hu-
man study of patch maintainability involving 150 partici-
pants and 32 real-world defects. Their results indicate that
machine-generated patches are slightly less maintainable
than human-written ones. Tao et al. [72] investigated an
application scenario of automatic program repair where
the auto-generated patches are used to aid the debugging
process by humans.

Redundancy assumption. Martinez et al. [17] investi-
gated all commits of 6 open-source Java projects experi-
mentally, and found that a large portion of commits can be
composed of what has already existed in previous commits,
thereby validating the fundamental redundancy assumption
of GenProg. In the same year, Barr et al. [18] inquired
whether the redundancy assumption (or plastic surgery
hypothesis) holds by examining 15,723 commits from 12
large Java projects. Their results show that 43% changes can
be reconstituted from existing code, thus promising success
to the repair methods that search for fix ingredients in the
buggy program considered.

Patch overfitting. Qi et al. [13] analyzed the patches
reported by three existing patch generation systems (i.e.,
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GenProg, RSRepair, and AE), and found that most of these
are not correct and are equivalent to a single functionality
deletion, due to either the use of weak proxies or weak
test suites. Based on this observation, they presented Kali
which generates patches only by deleting functionality.
Their experiments show that Kali can find at least as many
plausible patches than three prior systems on the GenProg
benchmark. Smith et al. [53] conducted a controlled em-
pirical study of GenProg and RSRepair on the IntroClass
benchmark. By using two test suites for each program
(one for patch generation and another for evaluation), their
experiments identified the circumstances under which patch
overfitting happens. Long and Rinard. [73] analyzed the
search spaces for patch generation systems. Their analysis
indicates that correct patches occur sparsely within the
search spaces and that plausible patches are relatively abun-
dant compared to correct patches. They suggest using infor-
mation other than the test suite to isolate correct patches.
Yu et al. [47] investigated the feasibility and effectiveness of
test case generation in addressing the overfitting problem.
Their results indicate that test case generation is ineffective
at promoting the generation of correct patches, thus calling
for research on test case generation techniques tailored to
program repair systems. Xin et al. [48] proposed a tool
named DiffTGen, which could identify overfitting patches
through test case generation. They also showed that a repair
method configured with DiffTGen could avoid obtaining
overfitting patches and potentially generate correct ones.
Yang et al. [54] presented an overfitting patch detection
framework which can filter out overfitting patches by en-
hancing existing test cases.

Analysis of real-world bug fixes. Martinez and Mon-
perrus [38] proposed to mine repair actions from soft-
ware repositories. Based on a fine-grain AST differencing
tool, their work analyzed 62,179 versioning transactions
extracted from 14 repositories of open-source Java software,
in order to obtain the probability distributions over different
repair actions. It was expected that such distributions can
guide the search of repair methods. Zhong and Su [74] con-
ducted a large-scale empirical investigation on over 9,000
bug fixes from 6 popular Java projects, then distilled several
findings and insights that can help improve state-of-the-
art repair methods. Soto et al. [75] presented a large-scale
empirical study of bug fix commits in Java projects. Their
work provided several insights about broad characteristics,
fix patterns, and statement-level mutations in real-world
bug fixes, motivating additional study of repair for Java.

Performance evaluation. Kong et al. [76] compared four
program repair techniques on 153 bugs from 9 small to
medium sized programs, and investigated the impacts of
different programs and test suites on effectiveness and
efficiency of the techniques in comparison. Martinez et al.
[7] conducted a large-scale empirical evaluation of pro-
gram repair methods on 224 bugs in Defects4J. Their ex-
perimental results showed that three considered methods
(i.e., GenProg, Kali, and Nopol) can generate test-adequate
patches for 47 bugs, among which 9 bugs were confirmed
to be repaired correctly by manual. Le et al. [77] presented
an empirical comparison of different synthesis engines for
semantics-based repair approaches on IntroClass bench-
mark. Durieux et al. [78] reported the test-adequate patches

obtained by Nopol on the bugs of Defects4J version 1.1.0.
Influence of fault localization. Qi et al. [79] evaluated

the effectiveness of 15 popular fault localization techniques
when plugged into GenPog. Their work claims that auto-
mated fault localization techniques need to be studied from
the viewpoint of fully automated debugging. Assiri and
Bieman [80] experimentally evaluated the impact of 10 fault
location techniques on the effectiveness, performance, and
repair correctness of a brute-force repair method. Wen et al.
[81] conducted controlled experiments using the Defects4J
dataset to investigate the influence of the fault space on a
typical search-based repair approach (i.e., GenProg).

Datasets. Just et al. [19] presented Defects4J which is a
bug database containing 357 real bugs from 5 real-world
open-source Java projects. Le Goues et al. [82] designed two
datasets (i.e., ManyBugs and IntroClass), which consist of
1,183 bugs in 15 C programs and support the comparative
evaluation of repair algorithms for various of experimen-
tal questions. Tan et al. [83] presented a dataset, called
Codeflaws, where all 3,902 defects contained from 7,436 C
programs are classified into 39 defect classes. Berlin [84]
collected a dataset called DBGBench, which consists of 27
real bugs in widely-used C programs and can serve as
reality check for debugging and repair approaches.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed ARJA, a new GP based
program repair approach for Java. Specifically, we present
a lower-granularity patch representation which properly
decouples the search subspaces of likely-buggy locations,
operation types and ingredient statements, thereby enabling
GP to traverse the search space more effectively. Based on
this new representation, we propose to view automated
program repair as a multi-objective optimization problem of
minimizing the weighted failure rate and patch size simulta-
neously, and then use a multi-objective GA (i.e., NSGA-II) to
search for simpler repairs. To speed up the fitness evaluation
of GP, a test filtering procedure is used to ignore unrelated
tests. To reduce the search space, we design three types
of rules that are seamlessly integrated into three different
phases (i.e., operation initialization, ingredient screening
and solution decoding) of ARJA. In addition, we present
a type matching strategy that can exploit the syntactic
patterns of the statements that are out of scope at the
destination so as to invent some new ingredient statements
that are potentially useful. The type matching strategy can
be optionally integrated into ARJA.

We conduct a large-scale experimental study on both
seeded bugs and real-world bugs. The evaluation on seeded
bugs clearly demonstrates the necessity and effectiveness of
multi-objective GP used in ARJA, and also illustrates the
strength of the type matching strategy. Furthermore, we
evaluate ARJA and its three variants using type matching
on 224 real-world bugs from Defects4J, in comparison with
several state-of-the-art repair approaches. The comparison
results show that ARJA can generate a test-suite adequate
patch for the highest number (i.e., 59) of real bugs, as
opposed to only 27 by jGenProg and 35 by Nopol. The three
ARJA variants can fix some bugs that cannot be fixed by
ARJA, showing the potential of type matching on real-world
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bugs. Manual analysis confirms that ARJA can correctly fix
18 bugs at least in Defects4J, as opposed to 5 by jGenProg.
To our knowledge, there are 7 among the 18 bugs that
are repaired automatically and correctly for the first time.
Another highlight is that ARJA can correctly repair several
multi-location bugs that are widely recognized as hard to be
repaired. Our study strongly suggests that the power of GP
for program repair was far from being fully exploited in the
past, and that GP can be expected to perform much better
on this important and challenging task.

Although ARJA shows promising performance, we real-
ize that the number of bugs correctly fixed by ARJA is still
quite low. Currently, practitioners cannot rely on a single
tool when repairing bugs. It may be a good practice to
run several advanced tools in parallel so as to increase the
chance for fixing a bug.

ARJA is publicly available at GitHub to facilitate further
reproducible research on automated Java program repair:
http://github.com/yyxhdy/arja.

In the future, we plan to incorporate a number of repair
templates [55] into our ARJA framework so as to further
enhance its performance on real-world bugs. Moreover,
considering the mutational robustness [85] in software, we
would like to combine the infrastructure of ARJA and
advanced many-objective GAs [86], [87] to improve non-
functional properties [27], [29] of Java software.
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