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Objective Reduction in Many-Objective
Optimization: Evolutionary Multiobjective
Approaches and Comprehensive Analysis

Yuan Yuan, Yew-Soon Ong, Abhishek Gupta, and Hua Xu

Abstract—Many-objective optimization problems bring great
difficulties to the existing multiobjective evolutionary algorithms,
in terms of selection operators, computational cost, visualiza-
tion of the high-dimensional tradeoff front, and so on. Objective
reduction can alleviate such difficulties by removing the redun-
dant objectives in the original objective set, which has become
one of the most important techniques in many-objective optimiza-
tion. In this paper, we suggest to view objective reduction as a
multiobjective search problem and introduce three multiobjective
formulations of the problem, where the first two formulations are
both based on preservation of the dominance structure and the
third one utilizes the correlation between objectives. For each
multiobjective formulation, a multiobjective objective reduction
algorithm is proposed by employing the nondominated sorting
genetic algorithm II to generate a Pareto front of nondominated
objective subsets that can offer decision support to the user.
Moreover, we conduct a comprehensive analysis of two major
categories of objective reduction approaches based on several the-
orems, with the aim of revealing their strengths and limitations.
Lastly, the performance of the proposed multiobjective algo-
rithms is studied extensively on various benchmark problems and
two real-world problems. Numerical results and comparisons are
then shown to highlight the effectiveness and superiority of the
proposed multiobjective algorithms over existing state-of-the-art
approaches in the related field.

Index Terms—Many-objective optimization, multiobjective
evolutionary algorithms (MOEAs), multiobjective optimization,
objective reduction.

I. INTRODUCTION

IN PRACTICE, it is desirable with most applications
to consider as many objectives as possible in order

to better satisfy various performance demands [1], [2].
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Resultant problem formulations lead to the existence of
multiobjective optimization problems (MOPs) with more than
three objectives, which are typically referred to as many-
objective optimization problems (MaOPs) in many real-world
scenarios [3]–[6]. Recently, MaOPs have stirred growing
interest in the evolutionary multiobjective optimization (EMO)
community, since they have posed great challenges to most
existing categories of multiobjective evolutionary algorithms
(MOEAs) [7], [8], including Pareto dominance- [9], [10],
indicator- [11], [12], and decomposition-based [13], [14]
MOEAs.

Over the past decade, some contributions have been made
to counter the limitations of existing MOEAs in many
objective optimization. For instance, alternative dominance
relations [15]–[17] and new diversity promotion mecha-
nisms [18]–[22] were proposed for Pareto dominance-based
MOEAs. Fast approximation of hypervolume (HV) val-
ues [23], [24] and other computationally efficient performance
indicators [25], [26] were studied for indicator-based MOEAs.
Further, novel updating strategies [27], [28] and the improved
generation of well distributed weight vectors [29]–[31] were
presented for decomposition-based MOEAs. Nevertheless, the
recently proposed many-objective algorithms may not ade-
quately handle MaOPs with more than around 15 objec-
tives [17], [20], with their effectiveness needing further
examination on real-world problems. Moreover, the improve-
ments on MOEAs cannot alleviate the difficulty of visualizing
the high-dimensional Pareto front which presents a steep
challenge in choosing preferred solutions in many-objective
optimization [20].

Instead of improving the scalability of existing MOEAs,
objective reduction attempts to decrease the problem difficulty
by reducing the number of objectives in the decision mak-
ing stage and/or during the search process [2], [7], [20], [32].
The motivation behind the approach is that for many prob-
lems with m objectives, there exists a minimum cardinality
subset of k (k < m) conflicting objectives that can generate
the same Pareto front as the original problem. Such k objec-
tives are often deemed as being essential, while all the other
objectives are termed as redundant [2]. The potential bene-
fits of objective reduction have been clearly highlighted in
several studies [1], [2], [33], which can be understood from
two main perspectives. On one hand, for a MaOP of interest,
if the number of objectives can be reduced to no more than
three, any state-of-the-art MOEA can be expected to solve

1089-778X c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:yyxhdy@gmail.com
mailto:asysong@ntu.edu.sg
mailto:abhishekg@ntu.edu.sg
mailto:xuhua@tsinghua.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


190 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 2, APRIL 2018

it efficiently; on the other hand, if the remaining number of
objectives is larger than three, objective reduction continues to
be helpful in making the subsequent search of multiobjective
or many-objective optimizers more effective and efficient, and
also eases the visualization of the Pareto front and the decision
making process.

Note that, the following previous research [1], [2], [7], [32],
objective reduction in this paper refers in particular to the
selection of a subset of given objectives which best describe
the original MOP. This approach is somewhat similar to fea-
ture selection. However, it is worth noting there exists another
related research direction aiming to determine a small set of
arbitrary objectives for the original MOP in the spirit of fea-
ture transformation, as is commonly used in visualization of
many-objective solution sets [34], [35]. In this regard, a prior
work similar to ours is by Köppen and Yoshida [36], where
the authors attempted to map a set of nondominated points in
higher-dimensional space to a 2-D Euclidian space for visu-
alization, whilst preserving both distance relations and Pareto
dominance relations as much as possible. They used nondom-
inated sorting genetic algorithm (NSGA)-II to find a tradeoff
between the preservation of the two relations.

This paper focuses on objective reduction related to fea-
ture selection. Feature selection has been extensively studied
in machine learning and statistics, and plenty of relevant meth-
ods [37] are now available in the literature. Unfortunately,
these standard feature selection techniques cannot be applied
directly to objective reduction in many-objective optimiza-
tion since the Pareto dominance structure [1], [38], [39] or
the conflict relation between objectives [33] must be taken
into account. However, the basic ideas in data analysis are
still quite useful for developing effective approaches to objec-
tive reduction, and have already inspired several significant
contributions [2], [33], [40]. Evolutionary computation (EC)
approaches have gained much attention in feature selec-
tion [41] due to their global search potential in the large-scale
search spaces. However, to the best of our knowledge, no
prior research has been made on using EC for objective reduc-
tion in the sense of feature selection. This is despite the fact
that the δ-MOSS and k-EMOSS problems [1] resulting from
objective reduction have been both proven to be NP-hard and
the exact algorithm is not applicable for larger instances of
practical size [1]. Moreover, most existing objective reduction
algorithms [2], [39], [42], [43] only return a unique reduced
objective set as the outcome in a single simulation run, with-
out considering conflicting requirements, such as the error
tolerance and the desired number of objectives. Thus, they
fail to offer necessary flexibility for decision support [44] to
the user. Taking this cue, this paper presents the first study
on evolutionary multiobjective approaches to objective reduc-
tion, exploiting both global search ability of EC and decision
support characteristic of multiobjective optimization. More
specifically, we propose three different multiobjective formu-
lations of the objective reduction problem using three different
kinds of error measures (δ, η, and γ ), where the first two mea-
sures consider the Pareto dominance structure while the last
focuses on the correlation structure. Then, we employ NSGA-
II as an effective solver for the three formulated MOPs, leading

to three evolutionary multiobjective approaches (NSGA-II-δ,
NSGA-II-η, and NSGA-II-γ ) to objective reduction.

Another highlight of this paper lies in the comprehen-
sive analysis of existing objective reduction algorithms, which
can be roughly categorized into dominance structure-based
approaches and correlation-based approaches [1], [2], [39].
The motivation comes from the fact that, although the two
types of approaches have their own advantages and disadvan-
tages, past studies on objective reduction fail to analyze their
behavior appropriately. For example, Brockhoff and Zitzler [1]
pointed out that the correlation-based approaches cannot guar-
antee preservation of Pareto dominance relation, but they did
not further indicate in what scenarios the correlation-based
approaches would fail due to this reason. Also, they did not
discuss the potential drawbacks of dominance structure-based
approaches and the rationale of correlation-based approaches.
Saxena et al. [2] implied that the dominance structure-based
approaches are extremely sensitive to misdirection, but their
inference is only based on the performance of the algorithms
proposed in [1] with the δ error fixed at 0. Additionally, their
conclusions were drawn mainly based on numerical results,
thereby making it difficult to satisfactorily uncover the true
strengths of dominance structure-based approaches and the
inherent limitations of correlation-based approaches in gen-
eral. In this paper, we undertake a comprehensive study of the
two categories of approaches through a theoretical treatment
of objective reduction which clearly highlights their general
strengths and weaknesses. Our goal is to enable users of these
algorithms to have a better understanding of why, how and
when they work. Moreover, our analysis is expected to pro-
vide deeper insights for designing more effective objective
reduction algorithms in the future.

In order to verify the performance of the proposed
multiobjective methods and analyze the two categories of
approaches comprehensively, we conduct a series of exper-
iments with benchmark problems with detailed comparisons
to current state-of-the-art algorithms. Experimental results
not only show the benefits of our proposed algorithms but
also agree well with the analysis. Furthermore, we apply
the proposed multiobjective approaches to two real-world
applications and demonstrate their efficacies in optimization,
visualization and decision making.

This paper takes inspiration from Brockhoff and Zitzler [1],
Saxena et al. [2], Jaimes et al. [33], and Singh et al. [39].
Based on these previous studies, our contributions to the topic
of objective reduction are summarized as follows.

1) Inspired by Brockhoff and Zitzler [1], we propose to for-
mulate objective reduction as an MOP and use NSGA-II
to derive a tradeoff between the δ error and the size
of the objective subset. Compared to the greedy algo-
rithms in [1] that can only solve a specific δ-MOSS
or k-EMOSS problem at a time, the proposed approach
indeed solves all δ-MOSS and k-EMOSS problems
at once, thereby providing more comprehensive anal-
ysis and better decision support in objective reduction.
Moreover, the evolutionary multiobjective search is ver-
ified to be superior to the greedy and exact search
used in [1].
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2) Inspired by the parameter R in [39], we introduce a new
error based on the dominance structure change, referred
to as η, which is easier to comprehend than δ error from
the point of view of decision support.

3) Inspired by the algorithms introduced in [33], we present
a new error, referred to as γ , to measure the change of
correlation structure. The deduction of γ is character-
ized by the use of Kendall’s rank correlation coefficient
instead of Pearson’s, and the clustering procedure that
takes the selected objectives as cluster centers.

4) Compared to [2], [33], and [39], the proposed
approaches differ not only in the decision support char-
acteristic derived from the multiobjective formulation,
but also in the search mechanism.

5) Inspired by the comments on the dominance structure-
and correlation-based approaches in [1] and [2], we carry
out further analysis of their strengths and limitations
based on theoretical and experimental results. Some new
insights are provided for the two categories of objective
reduction approaches.

The remainder of this paper is organized as follows.
Section II presents the preliminaries and background on
objective reduction. In Section III, the proposed evolutionary
multiobjective approaches are described in detail. Section IV
conducts a rigorous analysis of dominance structure- and
correlation-based approaches based on several theorems in
order to show their general strengths and limitations. Section V
presents experiments with some objective reduction algo-
rithms for benchmark problems. In Section VI, the proposed
multiobjective approaches are applied to two real-world prob-
lems. In Section VII, the benefits of the proposed approaches
are illustrated in optimization, visualization and decision mak-
ing. Lastly, concluding remarks and directions for future work
are given in Section VIII.

II. PRELIMINARIES AND BACKGROUND

A. Multiobjective and Many-Objective Optimization

A general MOP can be mathematically formulated as

min f(x) = ( f1(x), f2(x), . . . , fm(x))T

subject to gi(x) ≤ 0, i = 1, 2, . . . , u

hj(x) = 0, j = 1, 2, . . . , v

x ∈ �. (1)

x = (x1, x2, . . . , xn)
T is a n-dimensional decision vector in the

decision space �; f : � → � ⊆ R
m, is an objective vector

consisting of m objective functions, which maps n-dimensional
decision space � to m-dimensional attainable objective space
�. For MaOPs, m > 3. gi(x) ≤ 0 and hj(x) = 0 represent
inequality and equality constraints, respectively.

In an MOP, there typically exists no solution that minimizes
all objective functions simultaneously. Therefore, the attention
is paid to approximating the Pareto front that represents opti-
mal tradeoffs between objectives. Several basic concepts about
MOPs are provided below.

Definition 1 (Weak Pareto Dominance): A vector u =
(u1, u2, . . . , uk)

T is said to weakly dominate another vector

Fig. 1. Pareto front and a sample set of the three-objective WFG3 problem.

v = (v1, v2, . . . , vk)
T, denoted by u � v, iff ∀i ∈ {1, 2, . . . , k} :

ui ≤ vi.
Definition 2 (Pareto Dominance): A vector u = (u1,

u2, . . . , uk)
T is said to dominate another vec-

tor v = (v1, v2, . . . , vk)
T, denoted by u ≺ v, iff

∀i ∈ {1, 2, . . . , k} : ui ≤ vi and ∃j ∈ {1, 2, . . . , k} : uj < vj.
Definition 3 (Pareto Front): The Pareto front of an MOP is

defined as PF := {f(x∗) ∈ �|�x ∈ �, f(x) ≺ f(x∗)}.
Definition 4 (Weak ε-Dominance [45]): A vector u =

(u1, u2, . . . , uk)
T is said to weakly ε-dominate another vec-

tor v = (v1, v2, . . . , vk)
T, denoted by u �ε v, iff ∀i ∈

{1, 2, . . . , k} : ui − ε ≤ vi.
Roughly speaking, the goal of MOEAs is to find the best

possible Pareto front-approximation, i.e., the obtained non-
dominated objective vectors should be close to the Pareto front
(convergence) and also distributed well along the Pareto front
(diversity).

B. Basic Concepts in Objective Reduction

Unless otherwise specified, the given MOP for objec-
tive reduction always has the formulation defined in (1);
the original (or universe) objective set is denoted as F0 =
{ f1, f2, . . . , fm}; PF0 refers to the Pareto front of the original
MOP. For convenience, the notation u(F) is used to denote
the subvector of u given by a nonempty objective subset F .
For example, if u = ( f1(x), f2(x), f3(x))T, F := { f1, f3}, then
u(F) = ( f1(x), f3(x))T.

One of the basic aims of objective reduction is to find an
essential objective set [2] for a given MOP, whose definition
and related concepts are given as follows.

Definition 5: An objective subset F ⊂ F0 is said to be
redundant, iff the Pareto front corresponding to F ′ := F0\F
is PF′ = {u(F ′)|u ∈ PF0}

Definition 6: An objective set F is said to be an essential
objective set, iff F0\F is a redundant objective subset with
the largest cardinality.

Definition 7: The dimensionality of a given MOP or PF0
refers to the cardinality of an essential objective set.

To illustrate the above definitions, Fig. 1 shows the Pareto
front of the three-objective WFG3 problem [46], [47], which
is a straight line from (0, 0, 6)T to (1, 2, 0)T.1 From Fig. 1,

1Ishibuchi et al. [47] showed that the Pareto front of the original WFG3 [46]
has a nondegenerate part. In this paper, we study the transformed version of
WFG3 [47], where the nondegenerate part is removed by the introduction of
constraints.
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the objectives sets { f1} and { f2} are both redundant; there exist
two essential objective sets { f1, f3} and { f2, f3}; and hence the
dimensionality of this problem is 2. As illustrated, there may
exist different essential objective sets for a given MOP; the
concept “redundant” is with respect to F0 and two redundant
objective sets cannot always be removed simultaneously.

“Nonconflicting” is another common concept in objective
reduction, whose definition is as follows.

Definition 8: Two objectives fi, fj ∈ F0 are said to be non-
conflicting, if ∀u, v ∈ PF0 : u({ fi}) ≤ v({ fi}) ⇔ u({ fj}) ≤
v({ fj}).

Its relationship with the concept redundant is that, if fi and
fj are nonconflicting, then both { fi} and { fj} are redundant
(e.g., f1 and f2 in Fig. 1), which will be proven in the sup-
plementary material. The degree of conflict can be estimated
by the correlation between two objectives. In general, a more
negative correlation between two objectives indicates they are
more conflicting, whereas a more positive correlation means
they tend more to be nonconflicting.

C. Pareto Front-Representation and Misdirection

Objective reduction approaches generally operate on a set
of nondominated objective vectors obtained from an MOEA,
hereafter called the sample set. In objective reduction, the
sample set is not necessarily required to be a good Pareto
front-approximation, but a good Pareto front-representation
that refers to a solution set that conforms well with the domi-
nance structure or the correlation structure of the Pareto front.
The difference between “approximation” and “representation”
has been explained in detail by Saxena et al. [2].

In Fig. 1, the presented sample set provides a perfect Pareto
front-representation of the three-objective WFG3 problem,
because its dominance/correlation structure is completely con-
sistent with that of the Pareto front, i.e., f1 and f2 are
nonconflicting with each other and either of them is entirely
conflicting with f3. Given this sample set, an objective reduc-
tion algorithm based on dominance or correlation can identify
the essential objectives reliably. However, note that, this set is
indeed not a good Pareto front-approximation since it is far
away from the true Pareto front.

In practice, the sample set is generally not a perfect Pareto
front-representation, and there is almost always a certain
degree of misdirection [2], [44] in it. The misdirection here
refers to the difference in the dominance structure or the cor-
relation structure, between the Pareto front and the sample
set [44].2 To further explain this, Fig. 2 shows a sample set
of three-objective WFG3 which is projected on the f2 − f3
and f1 − f2 objective subspaces, respectively. As seen from
Fig. 2(a), the dominance structure in this sample set is a little
different from that in the Pareto front, because some solutions
become dominated with respect to the f2 − f3 objective sub-
space; these solutions contribute to the difference that can be
interpreted as misdirection, while the rest can be interpreted
as signal. Similarly, from Fig. 2(b), the correlation structure

2References [2] and [44] used the term “noise” to refer to this concept.
In this paper, we use the term “misdirection” instead to avoid confusion
stemming from the general meaning of noise.

(a) (b)

Fig. 2. Illustration of misdirection using a sample set of three-objective
WFG3. Projection onto the (a) f2-f3 plane and (b) f1-f2 plane.

in the Pareto front is also violated slightly by this sample set,
where f1 and f2 are not perfectly positively correlated. A well-
designed objective reduction algorithm is expected to work
well with a varying degree of misdirection [2].

D. Existing Approaches to Objective Reduction

In recent years, some objective reduction algorithms have
been proposed in the literature. As mentioned before, these
algorithms can be broadly classified into two categories
in essence: 1) dominance structure- and 2) correlation-
based approaches. Dominance structure-based approaches aim
to preserve the dominance structure as much as possible
after removing objectives, while correlation-based approaches
exploit the correlation within objective pairs and consider to
keep the most conflicting objectives and eliminate the objec-
tives that are nonconflicting with others. In the following, two
typical studies are highlighted, which belong to the dominance
structure- and correlation-based approaches, respectively.

1) Dominance Relation Preservation [1]: This objective
reduction approach is based on preserving the weak Pareto
dominance relations. For a particular objective subset F ⊆ F0,
this approach considers each solution pair u, v ∈ N satisfy-
ing u(F) � v(F), and computes the minimum nonnegative ε

that ensures u �ε v for each pair. After examining all possi-
ble solution pairs in N , the error equals to the maximum ε

recorded. This error is denoted as δ, which can be viewed as
a criterion to measure the degree of conflict between F and
F0. Based on this criterion, two problems regarding objective
reduction are formalized as follows.

Definition 9 (δ-MOSS Problem): Given a δ0 ≥ 0 and a
sample set N , the problem is to compute a smallest subset
F ⊆ F0 satisfying the condition that its associated δ value is
no greater than δ0.

Definition 10 (k-EMOSS Problem): Given a k0 ∈ N
+ and a

sample set N , the problem is to compute an objective subset
F ⊆ F0 with the minimum δ value in the premise |F | ≤ k0.

In the study by Brockhoff and Zitzler [1], an exact algorithm
for both δ-MOSS and k-EMOSS problems was proposed.
Given that the two problems are both NP-hard, three greedy
algorithms were also developed for large instances of δ-MOSS
and k-EMOSS, respectively.

2) Principal Component Analysis and Maximum Variance
Unfolding [2]: Based on two well-known dimensionality
reduction techniques, i.e., principal component analysis (PCA)
and maximum variance unfolding (MVU), this paper proposed
two algorithms, namely L-PCA and NL-MVU-PCA, for linear
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TABLE I
SUMMARY OF THE STUDIES REVIEWED IN THIS PAPER

and nonlinear objective reduction, respectively. The core idea
is to find the smallest set of conflicting objectives preserv-
ing the correlation structure in the given sample set, which
is achieved by removing objectives that are nonconflicting
along the significant eigenvectors of the correlation matrix
(for L-PCA) or the kernel matrix (for NL-MVU-PCA). In
the experiments, L-PCA and NL-MVU-PCA were compared
with the exact and greedy algorithms in [1] in the context of
identifying the essential objective set.

Besides the aforementioned works, there are a few
other noteworthy contributions in objective reduction.
Jaimes et al. [33] presented an approach based on an unsu-
pervised feature selection technique, where the objective set is
divided into neighborhoods of fixed size around each objec-
tive according to the correlation strength. Singh et al. [39]
proposed a Pareto corner search evolutionary algorithm
(PCSEA) that only searches for the corners of the Pareto
front instead of the complete Pareto front. The population
obtained by PCSEA is then used for the objective reduction,
which is based on the premise that the number of nondomi-
nated solutions will be affected substantially by omitting an
essential objective. Guo et al. [42] proposed to employ a
k-medoids clustering algorithm to identify potentially redun-
dant objectives by merging the more correlated objectives
into the same cluster, where the clustering is based on a
metric combing mutual information and correlation coeffi-
cient. Duro et al. [44] extended the framework proposed
in [2] to include the analysis analogous to δ-MOSS and
k-EMOSS, which could serve as decision support for deci-
sion makers. De Freitas et al. [48] introduced the concept
of aggregation trees for the visualization of the results of
MaOPs, and also used it as a means of performing objec-
tive reduction. Guo et al. [49] claimed that the corners used
in PCSEA are insufficient to reflect the entire Pareto front,
and thereby developed an algorithm using the representa-
tive nondominated solutions instead. Wang and Yao [43]
adopted the nonlinear correlation information entropy to mea-
sure both linear and nonlinear correlation between objectives
and then used a simple method to select the most conflicting
objectives.

Moreover, it is worth mentioning that several stud-
ies [50]–[54] have focused on integrating the objective reduc-
tion algorithms into MOEAs in order to simplify the search.
This paradigm is often referred to as online objective reduc-
tion. However, in this paper, our attention is concentrated
on the objective reduction algorithms themselves, so offline
objective reduction is mainly considered. In Table I, we sum-
marize the reviewed studies on objective reduction in each
category.

At this juncture, it is important to distinguish two different
issues related to the objective reduction algorithms.

1) δ-MOSS and k-EMOSS analysis.
2) Identification of an essential objective set.

Some existing studies (see [1], [33]) are devoted to the first
issue and do not explicitly consider the second one, while the
others (see [2], [39]) only considered the second issue. The
algorithms for the first issue can provide the decision support
for the user by investigating δ-MOSS problems with differ-
ent δs, and k-EMOSS problems with different ks; the selected
objective subset may not be an essential objective set, but a
desirable one consistent with the user’s preference in a specific
application scenario. As for the second issue, it only depends
on the MaOP at hand and has nothing to do with the user’s
preference. Note that an algorithm for the first issue can be
easily used for the second one by solving a δ-MOSS problem
with a sufficiently small δ value [2]. In this paper, the proposed
multiobjective approaches adequately address the first issue
that is contended to be more practical. However, it appears
difficult to have an experimental evaluation and comparison
of the effect of objective reduction in this respect. Therefore,
the proposed multiobjective approaches are applied to the sec-
ond issue when analyzing their strengths and limitations in
objective reduction.

III. PROPOSED MULTIOBJECTIVE APPROACHES

This section introduces the proposed multiobjective
approaches in detail. First, we describe how to formu-
late the objective reduction problem as an MOP. Three
multiobjective formulations are provided: the first two (intro-
duced in Section III-A) are based on the dominance struc-
ture while the third (introduced in Section III-B) is based
on the correlation between objectives. Then, Section III-C
describes how to use MOEAs to solve the MOPs formulated
in Sections III-A and III-B. Lastly, Section III-D illustrates
that the proposed multiobjective approaches are well suited to
objective reduction.

A. Dominance Structure-Based Multiobjective Formulation

The objective reduction problem takes the original objective
set F0 and the sample set N as input, and its candidate solution
is in the form of an objective subset F .

The first multiobjective formulation of objective reduction,
namely δ-OR, has two objectives, which are minimizing both
number of selected objectives k (k = |F |) and δ error proposed
in [1]. As depicted in Section II-D, δ is mathematically
expressed as follows:

δ = max

⎧
⎨

⎩

⎧
⎨

⎩
min
ε≥0

u�εv

ε|u, v ∈ N , u(F) � v(F)

⎫
⎬

⎭

⋃
{0}

⎫
⎬

⎭
. (2)

δ can be seen as a criterion measuring the degree of dominance
structure change between F and F0. k and δ are conflict-
ing with each other to some extent. Usually, δ would become
smaller when k gets larger, and in the extreme case of max-
imum possible k value, i.e., k = |F0|, the minimum possible
delta value is achieved, i.e., δ = 0. With δ-OR formulation,
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the goal of objective reduction is to explore the Pareto front
of objective subsets.

Note that, when using δ error, all objective values must
have the same scale such that ε values are comparable among
objectives [1]. Moreover, δ error might be misleading if the
objective functions have different degree of nonlinearity [44].
Here, inspired by the definition of the parameter R in [39], we
propose an alternative error to measure the dominance struc-
ture change, denoted as η, which is free from the potential
disadvantages of δ mentioned above.

To compute the η error for an objective subset F ⊆ F0,
the sample set N is divided into two disjoint sets NNS and
NDS , where NNS = {u ∈ N |�v ∈ N : v(F) ≺ u(F)} and
NDS := N \NNS . Then η is expressed as

η = |NDS |/|N |. (3)

Note that, unlike δ, η naturally lies in the range [0, 1), which
is problem independent and indeed represents the proportion
of dominated (with respect to F) objective vectors among the
sample set N .

By replacing δ error in δ-OR with η error, we have the sec-
ond multiobjective formulation of objective reduction, namely
η-OR. The conflict relation between k and η is similar to that
between k and δ, with the maximum k = |F0| also ensuring
η reaches a minimum value 0, since the objective vectors in
N are mutually nondominated with respect to F0.

B. Correlation-Based Multiobjective Formulation

This section introduces another multiobjective formulation
of objective reduction, namely γ -OR. Unlike δ-OR and η-OR,
γ -OR is based on the correlation rather than dominance struc-
ture. Although there exist several correlation-based objective
reduction algorithms as reviewed in Section II-D, there is no
off-the-shelf criterion that evaluates any given objective sub-
set based on the correlation analysis. Now, we provide such
a criterion, denoted as γ , which is inspired by the objective
reduction procedures described in [33].

The computing of γ needs to exploit the correlation between
every pair of objectives in F0. Instead of using Pearson’s
correlation coefficient as in [2] and [33], Kendall’s [55]
rank correlation coefficient is adopted here. This is because
Pearson’s correlation coefficient is sensitive only to linear rela-
tionships between two variables. On the other hand, Kendall’s
rank correlation coefficient measures the extent to which, as
one variable increases, the other variable tends to increase,
without regard to whether the increase is represented by a lin-
ear or nonlinear relationship, which matches well with the
purpose of correlation analysis in objective reduction, i.e.,
identifying whether the improvement of one objective would
deteriorate/improve the other objective [38].

Let rτ (i, j) denote the Kendall’s rank correlation coefficient
between two objectives fi, fj ∈ F0, which can be calculated by
the given sample set N . The closer rτ (i, j) is to 1 (−1), the
stronger the monotonic increasing (decreasing) relationship is.
Define d(i, j) = (1− rτ (i, j))/2 as the distance between fi and
fj. Thus d(i, j) ∈ [0, 1], 0 (1) indicates fi and fj are completely
positively (negatively) correlated. Note that d(i, j) = d(j, i)
since rτ (i, j) is symmetric.

Algorithm 1: Clustering(F ,F0)
Input: an objective subset F := { fi1 , fi2 , . . . , fik } ⊆ F0; the

original objective set F0 = { f1, f2, . . . , fm}
Output: k objective set clusters C1, C2, . . . Ck
for j = 1 to k do

Cj ← { fij};
for each objective fl in F0\F do

min← d(l, i1);
c← 1;
for j = 2 to k do

if d(l, ij) < min then
min← d(l, ij);
c← j;

Cc ← Cc ∪ fl;

Fig. 3. Representation of chromosome as a binary string.

Now, the procedures to compute γ for an objective subset
F := { fi1, fi2 , . . . , fik} ⊆ F0 is as follows. First, split F into
k different clusters C1, C2, . . . , Ck, where fij falls into Cj and
is set as the center of Cj, j = 1 : k. Then, every objective
fl ∈ F0\F is associated to the nearest cluster in terms of its
distance to cluster centers. The clustering process is described
in detail in Algorithm 1. Once clustering is completed, every
objective in F0 belongs exclusively to one of the k clusters,
and the criterion γ is computed from

γ = max
j=1:k

max
fl∈Cj

d
(
ij, l

)
. (4)

γ can be seen as a measurement reflecting the degree of corre-
lation structure change between F and F0, and if an essential
objective is not selected by F , then there usually exist two
relatively conflicting objectives in the same cluster, leading to
a poor γ value.

The aim of γ -OR is to minimize both number of selected
objectives k and γ value, where γ ∈ [0, 1] since d(i, j) ∈
[0, 1]. Similar to δ-OR and η-OR, the two objectives of γ -OR
are conflicting with each other to some extent. In addition, as
indicated by (4), the maximum k value, i.e., k = |F0|, also
corresponds to a minimum γ value, i.e., γ = 0.

C. Using Multiobjective Evolutionary Algorithms

To solve the formulated MOP (δ-OR, η-OR, or γ -OR) using
MOEAs, a representation for the candidate solution must be
chosen and encoded as a chromosome. In this paper, a chro-
mosome is a binary string with m binary bits as shown in
Fig. 3, where m is the size of the original objective set, i.e.,
|F0|. Each binary bit encodes a single objective, and a bit
value of “1” or “0” means that the corresponding objective is
selected or excluded, respectively.
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Generally, based on this representation, any MOEA can
serve the purpose of evolving the Pareto optimal objective sub-
sets for each of the three formulated MOPs. Here, a popular
MOEA, i.e., NSGA-II [9], is employed. The basic procedures
of NSGA-II-based objective reduction is summarized as fol-
lows. Given the original objective set F0, the sample set N
and the formulated MOP (δ-OR, η-OR, or γ -OR), the algo-
rithm first randomly generates an initial population with N
chromosomes. Then the algorithm goes into iterations until
the stopping criterion specifying the maximum number of
generations is satisfied. At each generation g, binary tourna-
ment selection [9], single-point crossover [56], and bit flip
mutation [56] are performed on the current population Pg

to produce the offspring population Qg. Then, the best N
chromosomes are selected as the next population Pg+1 from
the union population Ug using fast nondominated sorting and
crowding distance. Moreover, it should be noted that k = 0
is meaningless for objective reduction, so once k = 0 for
a chromosome, its two objective values are both immedi-
ately set to +∞ in the proposed multiobjective approaches,
making such chromosomes disappear easily during elitist
selection.

For convenience, the resulting NSGA-II-based objec-
tive reduction algorithms are referred to as NSGA-II-δ,
NSGA-II-η, and NSGA-II-γ , respectively, depending on
which multiobjective formulation is used.

D. Why Multiobjective Approaches

The benefit of using multiobjective approaches for objec-
tive reduction mainly comes from two aspects. On one hand,
objective reduction is inherently a multiobjective task. When
performing objective reduction, we generally hope to keep the
reduced objective set as small as possible. However, since a
given sample set is only an approximation of the Pareto front,
the smaller reduced objective set usually means that we would
take a higher risk of losing problem information. Therefore,
the user needs to make a compromise between the two conflict-
ing aspects when finally determining a reduced objective set.
This application scenario can be naturally modeled as an MOP.
In each of our multiobjective formulations, the first objective
(k) corresponds to the size of the objective subset, while the
second objective (δ, η, or γ ) measures the degree of risk in a
particular way.

On the other hand, the multiobjective approaches are able
to obtain a set of estimated Pareto optimal objective sub-
sets, from which the user can gain deeper insights into the
objective reduction problem. This enables the user to make
a better decision when choosing the final reduced objec-
tive set. To further illustrate this, we reveal the relationship
between NSGA-II-δ and the work in [1] by the following
theorem.

Theorem 1: Given a sample set N , let PFδ = {(kj, δj)
T|j =

1 : κ} be the Pareto front of δ-OR problem. Then:
1) the solution to the δ-MOSS problem given by δ0 is any

objective subset corresponding to (kμ, δμ)T, where

μ = argmax
j

{
δj|δj ≤ δ0, j = 1 : κ

}
(5)

2) the solution to the k-EMOSS problem given by k0 is any
objective subset corresponding to (kν, δν)

T, where

ν = argmax
j

{
kj|kj ≤ k0, j = 1 : κ

}
. (6)

Theorem 1 implies that NSGA-II-δ can obtain solutions to
all possible δ-MOSS and k-EMOSS problems related to N
in a single simulation run, i.e., it can provide the necessary
information for decision support once for all. Whereas in [1],
a simulation run of the algorithm only concerns one specific δ-
MOSS (given by δ0) or k-EMOSS (given by k0) problem, and
while using heuristic algorithms, the two kinds of problems
have to be addressed by different greedy algorithms.

Note that, Theorem 1 along with the definitions of δ-MOSS
and k-EMOSS can be generalized to other types of errors, e.g.,
η and γ . But for simplicity, we still use the terms “δ-MOSS”
and “k-EMOSS” no matter what error is used.

IV. ANALYSIS OF DOMINANCE STRUCTURE- AND

CORRELATION-BASED APPROACHES

In this section, we first put forward several theorems on
objective reduction. Based on them, we analyze the strengths
and limitations of dominance structure- and correlation-based
approaches in terms of identifying the essential objective set,
respectively. Note that the analysis in this section also applies
to the proposed multiobjective approaches, since they are
based essentially on the dominance structure or the correlation.

A. Theoretical Foundations

In objective reduction, it is important to understand the orig-
inal Pareto front and the Pareto front corresponding to an
objective subset. The following theorem gives the relationship
between the two.

Lemma 1: Let PF′ be the Pareto front corresponding to an
objective subset F ′ ⊆ F0, then PF′ ⊆ {u(F ′)|u ∈ PF0}.

Based on Definition 5 and Lemma 1, the following theorem
provides a necessary and sufficient condition to decide whether
an objective subset is redundant or not, which can be viewed as
the principle of dominance structure-based objective reduction
approaches.

Theorem 2: An objective subset F ⊂ F0 is redundant, iff
�u, v ∈ PF0 : u(F ′) ≺ v(F ′), where F ′ := F0\F .

Further, Theorem 3 shows a way to judge whether an objec-
tive subset is redundant by exploiting its relationship with
another one. It needs to be stressed that the condition given
in Theorem 3 is sufficient yet not necessary for “redundancy,”
which is different from that in Theorem 2. In other words, if
F is redundant, there may exist no such objective subset F ′
satisfying ∀u, v ∈ PF0 : u(F ′) � v(F ′) ⇒ u(F) � v(F).

Theorem 3: Given two nonempty objective subsets
F ,F ′ ⊂ F0 and F ∩ F ′ = ∅, if ∀u, v ∈ PF0 : u(F ′) �
v(F ′) ⇒ u(F) � v(F), then F is redundant.

Based on Theorem 3, we have the following corollary,
which establishes the relationship between the concepts non-
conflicting and redundant.

Corollary 1: Given two objectives fi, fj ∈ F0, if fi and fj
are nonconflicting, then { fi} and { fj} are both redundant.
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Theorem 3 together with Corollary 1 will be used later in
Section IV-C to illustrate the principle and the limitation of
correlation-based approaches.

Lastly, we provide a theorem about the multiobjective for-
mulation η-OR, which will be used later to demonstrate the
strength of dominance structure-based approaches.

Theorem 4: Given a sample set N := PF0 and |PF0| <

+∞, PFη denotes the Pareto front of η-OR problem. Then
∃k∗ ∈ N : (k∗, 0)T ∈ PFη and any objective subset cor-
responding to (k∗, 0)T is an essential objective set for the
given MOP.

B. Strengths and Limitations of Dominance
Structure-Based Approaches

It can be inferred from Theorem 2 that the revelation of an
essential objective set can be transformed to the examination of
the dominance relation in the sample set with respect to every
objective subset. The dominance structure-based approaches
generally exploit this characteristic to guide the algorithm
design, with major difference in how to measure the degree
of violation of the condition in Theorem 2. Thus their algo-
rithm mechanisms can fit the nature of objective reduction very
well. In theory, as long as the sample set N provides a perfect
Pareto front-representation, a basic dominance structure-based
algorithm can identify the essential objective set accurately on
all the problems given sufficient computation time. Take η-OR
for instance, Theorem 4 indicates that, under the most ideal
situation, i.e., N := PF0, it is ensured that PFη includes the
vector (k∗, 0)T that corresponds to an essential objective set.

However, it is often expecting too much that N is a pre-
fect Pareto front-representation. The misdirection in N is very
likely to make dominance structure-based approaches fail to
capture the true dimensionality of PF0. This is mainly because
it is sometimes hard to reasonably determine whether some
solutions can be interpreted as misdirection by only exploit-
ing the mutual dominance relationship. To explain this further,
let us have a closer look at the criteria δ and η. For the cri-
terion δ, suppose the following N = {u0, u1, . . . , u2n−1, u2n},
where:

ui =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
10−6, 2n, 0

)T
, i = 0

(i, 2n− i, i)T, i = 1 : n

(i, 2n− i, 3n− i)T, i = n+ 1 : 2n− 1

(0, 2n,+∞)T i = 2n.

(7)

In this case, u2n could resemble misdirection since it is an out-
lier. If u2n is ignored, { f1, f2} would be identified as a unique
essential objective set, because the dominance structure is not
changed only with respect to the f1 − f2 objective subspace.
However, the computing of δ cannot automatically ignore u2n

and indeed involves all solutions in N , thus the δ error of
{ f1, f2} would tend to be positive infinity by considering the
dominance relation between u0 and u2n, making { f1, f2} dis-
qualify in becoming an essential objective set. As for criterion
η, we take three-objective WFG3 as an example again. Fig. 4
shows the projections of a sample set N (including NNS and
NDS ) on f2 − f3 objective space. In this case, η = 0.52 for
{ f2, f3} is a significant proportion. This implies that it is not

Fig. 4. Projection of N (including NNS and NDS ) on f2 − f3 objective
space for three-objective WFG3.

safe to interpret the solutions in NDS as misdirection accord-
ing to the large η error and consequently { f2, f3} would not
be identified as an essential objective set, which does not con-
form well with the intuition for Fig. 4. The problem lies in
that, although NDS accounts for a significant proportion of N ,
most of its objective vectors are very close to those in NNS
and can indeed be interpreted as misdirection. In summary, a
major limitation of dominance structure-based approaches is
that they may have difficulty in handling varying degree of
misdirection in the sample set effectively.

Another limitation of the dominance structure-based
approaches is that, they may over-reduce the objectives if N
fails to have a good coverage of PF0. This phenomenon is
more likely to occur when the dimensionality of PF0 is higher,
since exponentially more solutions are needed to represent PF0
well. For example, suppose the dimensionality of PF0 is 15,
and the limited size and diversity of N restricts its distribution
to only a part of PF0. Due to the inadequate representation of
PF0, the solutions in N may also be mutually nondominated in
a lower dimensional (e.g., 10-dimensional) objective subspace
which corresponds to an objective subset F . So the associated
error (e.g., δ or η) of F already reaches the minimal value,
i.e., 0; and because |F | < 15, the dominance structure-based
approaches would prefer to select F as the essential objective
set, leading to an unsuccessful identification.

Moreover, the computational complexity of dominance
structure-based approaches is dominated by analyzing the
dominance relation between every two solutions, whereas that
of correlation-based approaches is dominated by exploiting
the correlation relation between objective pairs. Considering
the number of solutions is normally much larger than the
number of objectives, i.e., |N | >> m, dominance structure-
based approaches are generally much more computationally
expensive than correlation-based approaches.

C. Strengths and Limitations of Correlation-Based
Approaches

Correlation-based approaches can generally cope with mis-
direction in the sample set more naturally and effectively when
compared to dominance structure-based approaches. This is
mainly because correlation only emphasizes on the overall
increasing or decreasing trend between objectives, without
focusing on the relationship between particular solutions like
the dominance structure-based approaches. Hence, correlation-
based approaches can usually negate the effect of misdirection
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easily. For example, the Kendall’s rank correlation matrix
based on N shown in Fig. 4 is computed as follows:

rτ =
⎛

⎝
1 0.901 −0.943

0.901 1 −0.952
−0.943 −0.952 1

⎞

⎠. (8)

It can be observed from this matrix that while f1 and f2
are strongly positively correlated (nonconflicting) with each
other, each of them is strongly negatively correlated (conflict-
ing) with f3. Thus, it can be concluded that { f1} and { f2}
are both redundant, and { f2, f3} and { f1, f3} are both essen-
tial objective sets, which is consistent with the true Pareto
front of three-objective WFG3. Recall that it is very diffi-
cult to identify an essential objective set in this case by using
η criterion, thereby highlighting the strength of correlation-
based approaches in handling the misdirection. Considering
this strength along with their higher computational efficiency
as mentioned before, they appear to be a better choice than
dominance structure-based approaches when embedded into
the iteration of MOEAs to perform online objective reduc-
tion. In addition, different from dominance structure-based
approaches, correlation-based approaches do not only provide
the essential objective set, but can also identify what objec-
tives are conflicting and what are nonconflicting, which would
be helpful information for decision makers.

The major limitation of correlation-based approaches is that
reducing objectives by correlation analysis is not completely
consistent with the original intention of objective reduction.
Recall that correlation-based approaches use correlation coef-
ficient to measure the degree of conflict between each pair
of objectives, aiming to keep the highly conflicting objectives
and remove the objectives that are nonconflicting with oth-
ers. Corollary 1 justifies the rationality of correlation-based
approaches in this respect. However, as seen from Theorem 3,
the redundancy of an objective can be caused due to its
relationship with an objective subset more than just a sin-
gle objective. However, conflict or correlation is restricted to
capturing the relationship between only two objectives. To
illustrate this, we add a third objective f3 = f1+ f2 to the well
known two-objective DTLZ2 [57] problem, and obtain a nearly
perfect sample set for this modified problem by NSGA-II.
Fig. 5 shows the projections of the sample set on the objective
subspaces f1−f2, f1−f3, and f2−f3, respectively. Based on this
sample set, the underlying Kendall’s rank correlation matrix
is computed as follows:

rτ =
⎛

⎝
1 −1 −0.016
−1 1 0.016
−0.016 0.016 1

⎞

⎠. (9)

From (9), it can be concluded that f1 and f2 are strongly
conflicting, but each of them appears neither conflicting nor
nonconflicting with f3 since rτ (1, 3) and rτ (2, 3) are both very
close to zero. Thus, f3 cannot be safely removed by correlation
analysis. However, according to f3 = f1+ f2 and Theorem 3, it
can be determined that { f3} is redundant. Indeed, by Fig. 5 and
Theorem 2, it can be further inferred that { f3} is the unique
redundant objective set and { f1, f2} is the unique essential
objective set for this problem.

Fig. 5. Projections of a sample set for the modified DTLZ2 problem on the
objective subspaces f1 − f2, f1 − f3, and f2 − f3.

Fig. 6. High-quality sample set obtained for the spline problem: f1 = x2+1,
f2 = −x2+ x+ 3, and f3 = −( f1+ f 3

2 ), where x ∈ [−2, 2], and its projection
on the f1 − f3 objective subspace.

Note that Saxena et al. [2] indicated that the correlation-
based approaches may lead to inaccurate results in some
cases where the misdirection interpreted is in fact the sig-
nal. To demonstrate this point, they constructed an artificial
problem shown in Fig. 6, in which f1 and f3 are globally
correlated but locally conflicting and the latter is not sig-
nificant enough. However, any algorithm with certain ability
in handling the misdirection would suffer from this poten-
tial side-effect inevitably, so it may not be regarded as an
inherent limitation of correlation-based approaches. To ensure
a lower error tolerance may relieve this issue. For example,
rτ (1, 3) = 0.652 for the objectives f1 and f3 in Fig. 6, if it is
assumed that two objectives are seen as nonconflicting only
when the correlation coefficient is larger than 0.7, then accu-
rate results can still be obtained, but at the cost of sacrificing
the strength in handling misdirection to some extent.

In summary, the correlation-based approaches cannot find
the essential objective set exactly on all problems, but their
strengths mentioned above make them popular for objective
reduction. Indeed, as shown in Table I, the majority of existing
studies focus on correlation-based approaches.

V. BENCHMARK EXPERIMENTS

In this section, we first describe several experimental design
conditions including the benchmark problems used, the gener-
ation of sample sets, and the algorithms used for comparison
purpose. Then, the extensive experiments and comparisons are
conducted on various benchmark problems from three different
aspects.

A. Benchmark Problems

To study the performance of objective reduction algo-
rithms, we employ five different test problems with varying
number of objectives and dimensionality in the experiments.
These problems include three well-known benchmark prob-
lems, i.e., DTLZ5(I, m) [2], [40], WFG3(m) [46], [47], and
DTLZ2(m) [57], and two new problems constructed based on
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DTLZ2(m), namely POW-DTLZ2(p, m) and SUM-DTLZ2(m),
all of which are described below.

DTLZ5(I, m) is a redundant problem derived from the
scalable DTLZ5(m) [57], where I ≤ m, I denotes the dimen-
sionality of the Pareto front and m denotes the original number
of objectives for the problem. The first m−I+1 objectives over
the Pareto front are mutually nonconflicting, and an essential
objective set is given by FT = { fl, fm−I+2, . . . , fm}, where
l ∈ {1, 2, . . . , m− I + 1}.

WFG3(m) is an m-objective optimization problem whose
dimensionality of Pareto front is 2. Except fm, the other objec-
tives over the Pareto front are nonconflicting with each other.
Thus, an essential objective set is given by FT = { fl, fm},
where l ∈ {1, 2, . . . , m− 1}.

DTLZ2(m) is a nonredundant problem with m objectives,
and its essential objective set consists of all m objectives, i.e.,
FT = { f1, f2, . . . , fm}.

POW-DTLZ2(p, m) is used to test the ability of the objec-
tive reduction algorithms to handle strong nonlinearity. The
problem is constructed by adding m new objectives into
DTLZ2(m), so it has 2m objectives in total. The first m
objectives are the original objectives of DTLZ2(m), while the
remaining m objectives are formulated as fm+j = f p

j , j = 1:m.
An essential objective set is given by FT = {fl1, fl2 , . . . , flm},
where lj ∈ {j, m+ j} for j = 1 : m.

SUM-DTLZ2(m) is designed to disclose the possible lim-
itation of correlation-based approaches, meanwhile show the
strength of dominance structure-based approaches in certain
aspect. Like POW-DTLZ2(p, m), the first m objectives of this
problem come from DTLZ2(m). The sums of every two differ-
ent objectives in { f1, f2, . . . , fm} form the remaining (m(m −
1))/2 objectives. Thus SUM-DTLZ2(m) has (m(m + 1))/2
objectives in total. The essential objective set is given by
FT = {f1, f2, . . . , fm}.

Except for WFG3(m), the number of decision variables for
the other problems depends on a parameter p, i.e., n = m +
q − 1. We set q to 10 for these problems as recommended
in [57]. As for WFG3(m), the number of decision variables is
set to 28 and the position related parameter is set to m− 1.

B. Generation of Sample Sets

The quality of the sample set would certainly influence
the behavior of these algorithms. However, few studies on
objective reduction emphasized this issue except the work by
Saxena et al. [2], where four types of sample sets with dif-
ferent qualities were used to study the performance of the
presented algorithms. In our experiments, two types of sam-
ple sets, i.e., N1 and N2, are used for each test instance, and
each of N1 and N2 has 30 different sets, which are obtained
by an SPEA2 variant referred as strength Pareto evolutionary
algorithm 2-shift-based density estimation (SPEA2-SDE) [19]
with the same number of generations for 30 independent rep-
etitions. N2 requires more computational effort (within 2000
generations) than N1 (within 200 generations) and achieves
a high-quality Pareto front-representation, whereas N1 suffers
from much more misdirection than N2 and thus poses greater
challenge to the algorithms in coping with the misdirection.

TABLE II
LIST OF OTHER ALGORITHMS IN COMPARISON

Note that, different from [2], we do not consider the randomly
generated sample set and the sample set distributed evenly on
the true Pareto front, since the conclusions are obvious in the
two scenarios.

Following the practice in [2], we assess the quality of N1
and N2 using the problem parameter g (convergence, not
for WFG3) and the normalized maximum spread indicator Is

(diversity) [18]. The closer g is to 0 and the closer Is is to
1 implies better convergence and diversity to some extent,
respectively. For N1 and N2, the average g and Is are as
follows.

1) N1 : g = 0.213 and Is = 1.636.
2) N2 : g = 0.019 and Is = 1.044.

It can be seen that the average g of N2 is nearly one order
of magnitude less than that of N1, so that they have clear
difference in quality.

C. Algorithms in Comparison

Several other objective reduction algorithms are involved
for comparison with the proposed multiobjective approaches.
Table II provides their short names used in this paper, cate-
gories and brief descriptions. All these algorithms are imple-
mented in Java and run on an Intel 3.20-GHz Xeon processor
with 16.0 GB of RAM.3

ExactAlg is not suited for large-scale instances, so some
of its results are unavailable in the experiments. There are
two greedy algorithms for k-EMOSS problem in [1], here
Greedy-k refers to the one based on omission of objectives.
The proposed multiobjective approaches adopt the parameters
given in Table III, where m is the number of objectives in the
problem to be reduced. Note that, exhaustive search can be
considered for the small instances, e.g., m ≤ 10, but for uni-
formity, we just solve all the instances using the evolutionary
multiobjective search.

Before performing ExactAlg, Greedy-δ, Greedy-k, and
NSGA-II-δ, the objective values of the sample set are first
normalized to a range of [0, 1] in each dimension, because
one assumption of δ error is that all objective values have the
same scale [1].

3The source code of the proposed objective reduction algorithms is available
online: https://github.com/yyxhdy/MOOR/archive/master.zip.

https://github.com/yyxhdy/MOOR/archive/master.zip
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TABLE III
PARAMETERS IN THE PROPOSED MULTIOBJECTIVE APPROACHES

(NSGA-II-δ, NSGA-II-η, AND NSGA-II-γ )

TABLE IV
RESULT OF NSGA-II-δ FOR A SAMPLE SET OF

DTLZ5(3, 20) CORRESPONDING N1

D. Investigation on the Behavior of
Multiobjective Approaches

The multiobjective approaches return a number of nondom-
inated objective subsets along with the corresponding errors
for an objective reduction problem, which can provide deci-
sion support to the user. As an illustration, Table IV shows the
result of NSGA-II-δ for a sample set of DTLZ5(3, 20) cor-
responding to N1. It is clear from Table IV that an objective
set with smaller size would lead to a larger error. So, the user
need to make a tradeoff when choosing a preferred one. For
example, when selecting { f13, f19, f20} as the reduced objective
set, the user should consider whether the error δ = 0.255 is
tolerable or not for the current application.

Fig. 7 provides a clearer picture of how the error decreases
with the number of objectives increasing in the results of
NSGA-II-δ, NSGA-II-η, and NSGA-II-γ . Four DTLZ5(I, 20)
instances are used for illustration here, and the results are
shown for both N1 and N2. In each chart of this figure, the
horizontal axis shows the number of objectives selected (k),
and the vertical axis shows the error (δ, η, or γ ) for the corre-
sponding k-EMOSS problem averaged over 30 sample sets in
N1 or N2, which can be obtained directly from the results of
multiobjective approaches as indicated in Theorem 1. Based
on Fig. 7, the following observations are helpful for better
understanding the behavior of the multiobjective approaches.

1) The variation trends of the errors are different in NSGA-
II-δ, NSGA-II-η, and NSGA-II-γ . It is very reasonable
since the three types of errors have quite different
implications.

2) All three multiobjective approaches achieve a relatively
small error at k = |FT | in most cases, which validates
the rationality of the three kinds of errors to some extent.

3) For N2, the errors in the multiobjective approaches usu-
ally have a sharp drop at k = |FT | − 1 to a very small
value at k = |FT |, so it would be easy to pick out

Fig. 7. Results of NSGA-II-δ, NSGA-II-η, and NSGA-II-γ on DTLZ5(3, 20),
DTLZ5(6, 20), DTLZ5(9, 20), and DTLZ5(12, 20), corresponding to N1 and
N2. The error for each point is averaged over 30 sample sets in N1 or N2.

TABLE V
AVERAGE COMPUTATION TIME (IN SECONDS) FOR EACH RUN

ON FOUR CONSIDERED DTLZ5(I, 20) INSTANCES

the essential objective set by exploiting this characteris-
tic. However, for N1, the phenomena is not so obvious,
implying that N1 would lead to greater difficulty in
identifying the essential objective set.

4) The error η in NSGA-II-η almost decreases exponen-
tially to 0 as k increases except on DTLZ5(3, 20) and
it usually has already reached a sufficiently small value
before k is increased to |FT |, which is quite different
from the other two types of errors. The possible reason
is that, with the dimension increasing, the number of
nondominated solutions in the sample set grows expo-
nentially, and the cardinality of NDS would become
more inadequate to reflect the real degree of the dom-
inance structure change in the Pareto front. In view of
this, we suggest that the tolerable η error corresponding
to a larger k should become smaller to relieve the curse
of dimensionality.

In Table V, we show the average computation time required
by each run of NSGA-II-δ, NSGA-II-η, and NSGA-II-γ ,
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Fig. 8. Comparison of NSGA-II-δ, ExactAlg, and Greedy-δ (Greedy-k) for the δ-MOSS or k-EMOSS problem.

respectively. As seen from Table V, the dominance structure-
based algorithms NSGA-II-δ and NSGA-II-η need much
more computational effort than the correlation-based algo-
rithm NSGA-II-γ , which is accordant with the analysis in
Section IV-B.

E. Effectiveness of Evolutionary Multiobjective Search

NSGA-II-δ, ExactAlg, and Greedy-δ (Greedy-k) all utilize
δ error to measure the change of the dominance structure,
and the difference between them mainly lies in the search
mechanism. In this section, we compare NSGA-II-δ with
ExactAlg and Greedy-δ (Greedy-k) in solving δ-MOSS or k-
EMOSS problems, in order to verify the effectiveness of the
evolutionary multiobjective search.

Here, as an illustration, we still use the four test instances
adopted in Section V-D. For each test instance, we choose
a single sample set from 30 ones in N1, which is associ-
ated with the result closest to the average convergence metric.
And for each sample set, we vary δ0 from 0 to 0.6 with an
interval of 0.05 and k0 from 1 to 20 with an interval of 1,
leading to 13 δ-MOSS problems and all related k-EMOSS
problems.

Fig. 8 shows the comparison results of the considered algo-
rithms on the δ-MOSS problems and k-EMOSS problems,
respectively. As seen from Fig. 8, all the results of NSGA-
II-δ match exactly with those of ExactAlg, which means that
NSGA-II-δ has achieved the optimal solutions to all consid-
ered δ-MOSS and k-EMOSS problems. The performance of
greedy algorithms including Greedy-δ and Greedy-k cannot
compare with that of NSGA-II-δ. Indeed, they can only obtain
the optimal solutions sometimes and always perform worse
than NSGA-II-δ in the other situations. For example, for the
sample set of DTLZ5(3, 20), Greedy-k yields worse δ values
than NSGA-II-δ on 15 out of total 20 k-EMOSS problems,
and achieves the same results only on the remaining 5 ones.
Moreover, when solving the δ-MOSS problem, it is natural

TABLE VI
COMPARISON OF THE COMPUTATIONAL TIME (IN SECONDS) OF

NSGA-II-δ, EXACTALG, GREEDY-k, AND GREEDY-δ

that the obtained number of objectives should be nonincreas-
ing with the increase of δ0, but it is not always the case
for Greedy-δ as shown in Fig. 8. This is because the greedy
search in Greedy-δ may only reach a local optimal solution
that depends on the given δ0, which reflects the necessity of
the global search in NSGA-II-δ.

Table VI reports the computational time of NSGA-II-δ,
ExactAlg, and Greedy-k for solving all related k-EMOSS prob-
lems, and the average computational time of Greedy-δ for
solving a specific δ-MOSS problem. From Table VI, it can
be seen that NSGA-II-δ incurs much less time than ExactAlg
on all four sample sets of considered test instances. Indeed,
the time required by ExactAlg may not be acceptable in prac-
tice, which even reaches about 4 h on the sample set of
DTLZ5(12, 20). Compared with Greedy-k, NSGA-II-δ also
uses relatively shorter time, usually a few seconds less, in all
test cases. Although Greedy-δ requires less time than NSGA-
II-δ, Greedy-δ only solves a specific δ-MOSS problem here
whereas NSGA-II-δ indeed provides solutions to all δ-MOSS
problems (the number is infinite) in a single run.

From the above, it can be concluded that, the evolution-
ary multiobjective search can achieve comparable results with
the global exact search but shows an overwhelming advantage
in the computational efficiency, and it is also superior to the
greedy search in terms of both effectiveness and efficiency.
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Fig. 9. Illustration of the influence of δ0/η0/γ0 on the performance of the
proposed multiobjective approaches in identifying the essential objective set.
The performance of L-PCA and NL-MVU-PCA is provided as a reference.

F. Comparison in Identifying the Essential Objective Set

In this section, we compare the proposed multiobjective
approaches with ExactAlg, Greedy-δ, L-PCA, and NL-MVU-
PCA in identifying the essential objective set, in order to
demonstrate the effectiveness of the proposed algorithms
and confirm the analysis conducted in Section IV. The
multiobjective approaches can return a number of nondomi-
nated objective subsets which contributes to decision support,
but a single one should be chosen as the essential objective
set here for the comparison. In practice, we can visually see
the obtained Pareto front of objective subsets for a specific
problem and find the most likely one. But for simplicity, we
just select the solution to a given δ-MOSS problem, where the
threshold of error (δ0, η0, or γ0) is specified beforehand and
kept the same for all the test instances. And as suggested in
Section V-D, η0 is decreased by an empirical factor of

√
3 from

k = 2 to counteract the impact of the exponentially growing
number of nondominated solutions in the higher-dimensional
objective space.

How to determine the threshold value is an important issue.
If it is set too small, the algorithm will not have the necessary
ability of handling the misdirection. An extreme case can be
seen in [2] where δ of ExactAlg and Greedy-δ is fixed at 0,
leading to very poor results by them on the sample sets with
misdirection as reported by Saxena et al. [2]. However, if it
is set too large, we will usually omit essential objectives by
mistake in many scenarios. For example, if we set γ0 to 0.3,
then it would mean that we can regard the two objectives as
nonconflicting once the correlation coefficient between them
reaches 0.4, which is obviously unreliable. Based on our expe-
rience with many problems and the sample sets with different
quality, we suggest to use the threshold values within the range
[0.1, 0.2], which can usually make the algorithm not only han-
dle the moderate degree of misdirection but also do a reliable
identification in various scenarios. In Fig. 9, we investigate

the influence of δ0/η0/γ0 ∈ [0.1, 0.2] on the performance of
multiobjective approaches, in terms of the frequency of suc-
cess in identifying the essential objective set out of 30 runs.
From Fig. 9, the performance of each algorithm is overall
stable, and more importantly, the relative superior or inferior
relationship between them remains similar no matter what the
threshold value is set in the considered range. Note that, we
only show four cases in Fig. 9 due to space limitation, but the
situation is similar in the other case, and also we find that their
performance will become much less sensitive to the threshold
values on N2. In the following experiments, we just set the
same threshold value, i.e., 0.15, for the three multiobjective
algorithms, ExactAlg and Greedy-δ, to ensure a fair compari-
son. As for L-PCA and NL-MVU-PCA, a variance threshold θ

is set to 0.997 and the correlation threshold Tcor is determined
by an empirical formula as recommended in [2].

Table VII shows the results of all the algorithms in terms
of the frequency of success out of 30 runs, where each run
is associated with a unique sample set in N1 (N2). Based
on Table VII, we first consider the dominance structure-
based approaches, i.e., NSGA-II-δ, NSGA-II-η, ExactAlg,
and Greedy-δ, in comparison. As analyzed in Section IV-B,
there mainly exist two potential difficulties that make these
algorithms fail to identify the essential objective set: 1) the
misdirection in the sample set and 2) the inadequate coverage
of the high dimensional Pareto front by the sample set. The
dominance structure-based approaches tend to select an exces-
sive number of objectives in the presence of the first difficulty,
while they would over-reduce the objectives due to the second
difficulty. Keeping the two difficulties in mind, we can provide
a sound explanation for the results of these algorithms, which
will be illustrated from the following three situations.

1) When the dimensionality |FT | is relatively low
(|FT | ≤ 6), they mainly suffer from the first difficulty
for N1. Table VIII shows some of these instances sepa-
rately and also reports the average number of objectives
obtained by NSGA-II-δ, NSGA-II-η, and Greedy-δ cor-
responding to N1. The results of ExactAlg (if available)
are omitted in Table VIII since they are always the same
with those of NSGA-II-δ. From Tables VII and VIII, the
considered algorithms normally fail to obtain a satisfying
performance on such instances for N1 and would choose
more than |FT | objectives on the average, which can be
attributed to their limitation in handling misdirection.
However, when it comes to N2, they perform obviously
better and achieve the optimal or near optimal results on
all these instances. It can be explained that, there exists
much less misdirection in N2 than in N1, leading to a
significant alleviation of the first difficulty with these
algorithms.

2) When the dimensionality |FT | is moderately high (7 ≤
|FT | ≤ 10), they would confront both two difficulties
for N1. In Table IX, we further show the average num-
ber of objectives identified by NSGA-II-δ, NSGA-II-η,
and Greedy-δ on such instances for N1. As seen from
Table VII, they generally perform poorly on these
instances corresponding to N1, which can be due to the
synthetic effect of the two difficulties. And as observed
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TABLE VII
FREQUENCY OF SUCCESS IN IDENTIFYING THE ESSENTIAL OBJECTIVE SET FT OUT OF 30 RUNS,

CORRESPONDING TO N1 AND N2. THE BEST FREQUENCIES ARE SHOWN IN BOLD

from Table IX, the number of objectives can be either
larger or smaller than |FT |, which may depend on
which difficulty has a greater impact on the algorithm.
When concerning N2, they yield the excellent results
on all these instances, most of which reach the best
frequency of 30. It can be inferred that, within this range
of dimensionality, the much higher quality of N2 can
simultaneously provide the significant reduction in mis-
direction and the adequate improvement in the coverage
of the Pareto front, thus alleviating both two difficulties
with these algorithms effectively.

3) As the dimensionality |FT | gets higher (|FT | ≥ 12), the
second difficulty would gradually become a dominating
factor that influences the behavior of these algorithms
corresponding to N1, which may lead to the severe
over-reduction of objectives. It is interesting to note
that, even when it comes to N2, they still perform
poorly on such instances, although there generally exists
certain performance improvement. To have a further

investigation, in Table X, we list these instances sep-
arately and show the average number of objectives
obtained per run corresponding to N1 and N2. As seen
from Table X, the phenomena of the over-reduction of
objectives occurs on each concerned instance for both
N1 and N2. Thus, it can be inferred that, although
the first difficulty could be almost eliminated on N2,
the second difficulty is not reduced substantially here
and still imposes the negative influence to these algo-
rithms because it is generally very hard for a sample
set to achieve an adequate coverage of the Pareto front
in such a high-dimensional (i.e., |FT | ≥ 12) objective
space.

Besides the above common features, we can obtain
the following observations from Table VII by making
a comparison among the four dominance structure-based
algorithms.

1) For N1, NSGA-II-η and NSGA-II-δ yield the same
results on 21 out of 32 instances. As for N2, the
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TABLE VIII
AVERAGE NUMBER OF OBJECTIVES IDENTIFIED PER RUN BY NSGA-II-δ,

NSGA-II-η, AND GREEDY-δ ON THE TEST INSTANCES WITH THE

DIMENSIONALITY |FT | ≤ 6, CORRESPONDING TO N1

TABLE IX
AVERAGE NUMBER OF OBJECTIVES IDENTIFIED PER RUN BY NSGA-II-δ,

NSGA-II-η, AND GREEDY-δ ON THE TEST INSTANCES WITH THE

DIMENSIONALITY 7 ≤ |FT | ≤ 10, CORRESPONDING TO N1

TABLE X
AVERAGE NUMBER OF OBJECTIVES IDENTIFIED PER RUN BY NSGA-II-δ,

NSGA-II-η, AND GREEDY-δ ON THE TEST INSTANCES WITH THE

DIMENSIONALITY |FT | ≥ 12, CORRESPONDING TO N1 AND N2

performance of NSGA-II-η is identical to that of
NSGA-II-δ on all the instances except DTLZ5(3, 5),
where there only exists a slight difference. Taken
together, we conclude that NSGA-II-η can generally
provide comparable performance to NSGA-II-δ.

2) NSGA-II-δ always obtains the same results as that of
ExactAlg (if available) for both N1 and N2. This is
because NSGA-II-δ has the strong ability to achieve the

Fig. 10. DTLZ5(2, 5): a randomly selected sample set in N1 and N2,
respectively, corresponding to FT = { f4, f5}.

optimal solutions to the δ-MOSS problems, which has
been verified in detail previously.

3) It is interesting to find that NSGA-II-δ and ExactAlg
do not show the absolute superiority over Greedy-δ in
identifying the essential objective set, although they gen-
erally obtain better solutions to δ-MOSS problems as
demonstrated before. By further observation, Greedy-δ
could be slightly better than NSGA-II-δ and ExactAlg
on the instances with relatively high dimensionality. This
can also be attributed to the inadequate coverage of
Pareto front by the given sample set. In such situation,
NSGA-II-δ and ExactAlg tend to over-reduce the objec-
tives as illustrated before, in other words, they would
usually return an objective subset with size k1 < |FT |
for a given δ0. But due to the weaker search abil-
ity, Greedy-δ may yield an objective subset with size
k2 > k1 by solving the same δ-MOSS problem and thus
may hit |FT | with a higher probability. Nevertheless, it
seems unreasonable to regard the unintentional success
as an advantage of Greedy-δ. Indeed, the performance
of NSGA-II-δ and ExactAlg is still in overall better
than that of Greedy-δ, which is particularly clear on the
SUM-DTLZ2(m) instances.

Based on Table VII, we now consider the correlation-based
approaches, i.e., NSGA-II-γ , L-PCA, and NL-MVU-PCA,
in comparison. On the whole, we can obtain the following
findings about them.

1) NSGA-II-γ achieves remarkable performance on all the
test instances except SUM-DTLZ2(m), corresponding to
both N1 and N2. And it even obtains the optimal results
on all such instances for N2. These results clearly indi-
cate that NSGA-II-γ has great and stable strength in
dealing with varying degree of misdirection in the sam-
ple set. To visually reflect this strength of NSGA-II-γ ,
we show a sample set of DTLZ5(2,5) corresponding to
N1 and N2, respectively, in Fig. 10; and we use the par-
allel coordinate plot to show a sample set of an instance
with higher dimensionality, i.e., DTLZ5(6, 20), for N1
and N2, respectively, in Fig. 11. From the two figures,
N1 shows features obviously affected by misdirection
in contrast to N2: for DTLZ5(2, 5), a fraction of solu-
tions in N1 are far away from the true Pareto front; as
for DTLZ5(6, 20), some solutions in N1 show conflict
between fi and fj, where i, j ∈ [1, 15].

2) L-PCA and NL-MVU-PCA perform quite well on
DTLZ5(I, m) with a relatively low dimensionality and all
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Fig. 11. DTLZ5(6, 20): the parallel coordinate plots for a randomly selected
sample set in N1 and N2, respectively.

WFG3(m) instances, e.g., DTLT5(5,50) and WFG3(25),
for both N1 and N2. This implies that they have
a certain capability to handle the misdirection effec-
tively. However, it appears that their ability deteriorates
seriously on the redundant problems at higher dimen-
sionality, e.g., DTLZ5(10,50) and DTLZ5(20,80). This
inference is made according to the fact that L-PCA
and NL-MVU-PCA yield the inferior results on such
instances for N1 but still show decent performance on
them for N2. Moreover, it is worth noting that both
two algorithms can adequately address the nonredundant
problem, i.e., DTLZ2(m), in all the considered cases.

3) The performance of NSGA-II-γ is generally better than
or at least equivalent to that of L-PCA and NL-MVU-
PCA. Notably, NSGA-II-γ shows much advantage over
both L-PCA and NL-MVU-PCA on the instances with
very strong nonlinearity between redundant objectives,
i.e., POW-DTLZ2(8,5) and POW-DTLZ2(8,10). Thus,
it can be safely concluded that, compared with L-PCA
and NL-MVU-PCA, NSGA-II-γ has stronger ability not
only in coping with misdirection but also in handling the
nonlinearity on these problems.

4) NL-MVU-PCA in overall performs better than L-PCA
corresponding to N1, implying that NL-MVU-PCA may
be better at coping with the misdirection than L-PCA.
However, L-PCA in general slightly outperforms NL-
MVU-PCA on DTLZ5(I, m) instances corresponding
to N2, which makes sense because there is only lin-
ear relationship between redundant objectives over the
Pareto front of DTLZ5(I, m) and there is not so much
misdirection in N2. Moreover, it is worth noting that NL-
MUV-PCA can address POW-DTLZ2(3, 5) and POW-
DTLZ2(3, 10) corresponding to N2 very well, whereas
L-PCA fails to identify the essential objective set in all
trials here. So, it can be inferred that NL-MVU-PCA is
clearly better than L-PCA in terms of handling the non-
linearity, although it cannot compare with NSGA-II-γ
in this respect.

Still based on Table VII, we gain the following insights
through the comparison between the considered dominance
structure-based approaches and correlation-based approaches.

1) All three correlation-based algorithms do not work well
for SUM-DTLZ2(m) in all the cases due to their inher-
ent limitation as indicated in Section IV-C, whereas
NSGA-II-δ, NSGA-II-η, and ExactAlg can address the
two SUM-DTLZ2(m) instances of interest perfectly.

2) Except on SUM-DTLZ2(m), NSGA-II-γ performs better
than, or competitively to all four dominance structure-
based algorithms corresponding to both N1 and N2, due
to its strength in handling misdirection.

3) The situation is much more complex when having
a comparison between L-PCA (NL-MVU-PCA) and
dominance structure-based algorithms, which is mainly
because the higher dimensionality would decrease the
ability of L-PCA (NL-MVU-PCA) in handling the mis-
direction as mentioned before. But by and large, without
considering SUM-DTLZ2(m), for the problem with very
low or very high dimensionality, L-PCA and NL-MVU-
PCA usually perform better; whereas for problems with
medium dimensionality, the four dominance structure-
based algorithms would exhibit certain advantage.

4) In summary, when the user has a high-quality sample set
at hand and know that the true dimensionality may not
be very high, dominance structure-based approach would
serve as a better choice since they generally apply to all
types of problems under such condition; otherwise the
correlation-based approaches are suggested for objective
reduction.

Lastly, it is worth pointing out that, although NSGA-II-δ
and NSGA-II-η have shown comparable performance in our
experiments, NSGA-II-δ needs to be executed on a normal-
ized sample set. Since normalization is a nontrivial task in the
presence of outliers, NSGA-II-η appears to be a better choice
than NSGA-II-δ from this perspective.

VI. APPLICATIONS TO REAL-WORLD PROBLEMS

In this section, the performance of the proposed
multiobjective approaches are further investigated on two
real-world problems: water resource problem [58] and car
side-impact problem [52], [59].

A. Water Resource Problem

The water resource problem consists of five objectives and
seven constraints, which relates to optimal planning for a storm
drainage system [58]. As a basis for the analysis, a sample set
is first produced by running SPEA2-SDE with a population
size of 200 and 2000 generations.

In Table XI, we show the detailed results of the proposed
multiobjective approaches. From this table, it is reasonable
to identify the reduced objective set as { f2, f3, f5} for both
NSGA-II-δ and NSGA-II-η. As for NSGA-II-γ , two objec-
tive sets { f1, f2, f4, f5} and { f2, f3, f4, f5} lead to the same error
0.109, and appear to be the best choices for the reduced
objective set. To validate the results, Fig. 12 uses the paral-
lel coordinate plots to visualize the nondominated solutions
obtained by running SPEA2-SDE on the original objective
set and the three reduced objective sets, respectively, where
the objective values are scaled by constant factors suggested
in [60] to aid visualization. As seen from Fig. 12, the parallel
coordinate plot corresponding to each of the three reduced
objective set closely matches with that obtained using the
original objective set, which confirms that either of the three



YUAN et al.: OBJECTIVE REDUCTION IN MANY-OBJECTIVE OPTIMIZATION 205

TABLE XI
RESULTS OF NSGA-II-δ, NSGA-II-η, AND NSGA-II-γ

FOR THE WATER RESOURCE PROBLEM

(a) (b)

(c) (d)

Fig. 12. Water resource problem: parallel coordinate plots for the non-
dominated solutions obtained by running SPEA2-SDE. (a) On the original
objective set. On the reduced objective set (b) { f2, f3, f5}, (c) { f1, f2, f4, f5},
and (d) { f2, f3, f4, f5}.

reduced objective sets is sufficient to generate a good estimate
of the Pareto front of this problem.

B. Car Side-Impact Problem

The car side-impact problem is transformed into a many-
objective problem with 11 objectives and 10 constraints [52].
The sample set is still generated by SPEA2-SDE with a
population size of 200 and 2000 generations.

Fig. 13 shows how error decreases with the number of
objectives increasing in the results of three multiobjective
approaches for the car side-impact problem. From Fig. 13, the
best tradeoff for NSGA-II-δ is obviously achieved at k = 6,
whereas the best tradeoff for NSGA-II-η or NSGA-II-γ is not
so apparent, which depends on the user’s preference. Here,
we set the same threshold as in Section V-F for η and γ

Fig. 13. Results of NSGA-II-δ, NSGA-II-η, and NSGA-II-γ for the car
side-impact problem.

(a) (b)

(c) (d)

Fig. 14. Car side-impact problem: parallel coordinate plots for the
nondominated solutions obtained by running SPEA2-SDE. (a) On the orig-
inal objective set. On the reduced objective set (b) { f1, f4, f5, f9, f10, f11},
(c) { f1, f4, f5, f8, f9, f11}, and (d) { f1, f2, f5, f6, f8, f9, f11}.

errors so as to choose a single objective set. Eventually,
both NSGA-II-δ and NSGA-II-η return { f1, f4, f5, f9, f10, f11}
or { f1, f4, f5, f8, f9, f11} as the reduced objective set, while
NSGA-II-γ selects { f1, f2, f5, f6, f8, f9, f11}. In Fig. 14, we
show the parallel coordinate plots corresponding to the non-
dominated solutions obtained by running SPEA2-SDE on the
original objective set and three reduced objective sets, respec-
tively. As seen from Fig. 14, the four parallel coordinate plots
are quite similar, verifying that all the three reduced objective
sets are enough to obtain a good estimate to the Pareto front
of this problem.

C. Discussion

From the above results, all three multiobjective algorithms
are effective in reducing the number of objectives for the two
real-world problems. The reduced objective sets yielded by
NSGA-II-δ and NSGA-II-η are the same, but are different
from those by NSGA-II-γ . The true Pareto front is unknown
for the two real-world problems, so it seems difficult to have
a definite conclusion which result is better. But because the
objective sets obtained by NSGA-II-δ (NSGA-II-η) have a
smaller size and are verified to be sufficient to represent the
original objective set, they are more likely to be the true
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TABLE XII
ESSENTIAL OBJECTIVE SETS OBTAINED FOR THE WATER

RESOURCE PROBLEM IN DIFFERENT STUDIES

essential objective set. One possible reason leading to the dif-
ference is that the correlation analysis in the correlation-based
approaches, e.g., NSGA-II-γ , is not enough to capture the
complex relationship between objectives in the two real-world
problems, although it generally works well on the existing
benchmark problems. Further explanation about this can be
found in Section IV-C.

Moreover, it is interesting to find that the identified essen-
tial objective sets for the two real-world problems usually vary
in different studies. Table XII shows the results on the water
resource problem taken from five existing studies. Considering
that these algorithms can usually identify the essential objec-
tive set exactly for numerous benchmark problems, it can
be inferred that the two real-world problems considered here
may pose greater challenge to the existing objective reduction
algorithms, especially the correlation-based approaches.

Lastly, it is worth noting that the qualitative method used
to validate the obtained reduced objective set in this section
follows the practice in [2], [39], and [49]. This validation
method is reasonable considering the Pareto fronts of the real-
world problems are generally unknown. However, its limitation
is that it relies on an evolutionary many-objective optimizer
which is a stochastic algorithm and may not have enough opti-
mization ability. To alleviate the limitation, we indeed run a
high performing algorithm (i.e., SPEA2-SDE) for a large num-
ber of generations until convergence to obtain a nondominated
solution set for the parallel coordinate plot. Figs. 12 and 14
only show the results of one simulation run, but many rep-
etitions are made in practice and almost unchanged parallel
coordinate plots are observed.

VII. BENEFITS OF THE PROPOSED APPROACHES

This section aims to discuss the benefits of the proposed
objective reduction algorithms in optimization, visualization,
and decision making, with some illustrative examples.

A. On Objective Reduction Assisted Optimization

Generally, the objective reduction approaches can assist
optimization in two ways. The first one, referred to as sub-
sequent optimization in this paper, is straightforward: after a
reduced objective set is obtained by an objective reduction
algorithm, an MOEA continues to run on the reduced set for a
number of generations and returns the nondominated solutions
obtained. The second, more commonly used approach, is the
so-called online objective reduction [50], [51], i.e., the objec-
tive reduction algorithm is embedded into the iterations of the
MOEA. Next, we use both techniques based on NSGA-II-γ

TABLE XIII
AVERAGE IGD (INCLUDING THE STANDARD DEVIATION IN THE

BRACKET) AND THE AVERAGE COMPUTATION TIME

(IN SECONDS) OVER 30 RUNS ON

15-OBJECTIVE WFG3

in order to demonstrate the benefits of the proposed objective
reduction approaches in optimization.

For the subsequent optimization, we first run a many-
objective algorithm, i.e., SPEA2-SDE, for 100 generations,
then the set of nondominated solutions obtained is input
into NSGA-II-γ for objective reduction, lastly we further run
SPEA2-SDE on the reduced objective set for 300 generations.
For convenience, we denote this optimization mode as SDEso.
As for online objective reduction, we still employ SPEA2-SDE
as the underlying optimizer, and NSGA-II-γ is incorporated
into SPEA2-SDE using the integration scheme in [1]. The
resultant online objective reduction algorithm is denoted by
SDEonline. To show the effectiveness, SDEso and SDEonline are
compared with SPEA2-SDE without any objective reduction,
denoted by SDEref for short. We also include A-NSGA-III [21]
for comparison, which is a decomposition-based algorithm
with reference vector adaptation and aims to better address
MaOPs with nonuniformly distributed Pareto fronts. For a fair
comparison, SDEonline, SDEref, and A-NSGA-III use 400 gen-
erations for optimization and the same population size is set for
all the algorithms. The other parameters for SPEA2-SDE and
A-NSGA-III follow the original studies [19], [21]. NSGA-II-γ
uses the same parameter setting as in Section V-F.

First, we use a benchmark problem, i.e., 15-objective
WFG3, for illustration purposes. The inverted generational dis-
tance (IGD) [61] is used as the performance metric, where the
reference set is produced by uniformly sampling 1000 points
on the true Pareto front. A-NSGA-III initially uses two-layered
reference vectors with two divisions in both boundary and
inside layers, leading to a population size of 240. Table XIII
reports the average IGD (including the standard deviation) and
the average computational time over 30 runs by four algo-
rithms in comparison. From Table XIII, SDEso and SDEonline
clearly outperform SDEref in terms of both effectiveness and
efficiency, which demonstrates the usefulness of NSGA-II-γ
in facilitating the effect of many-objective optimization. A-
NSGA-III performs quite poorly here, and the large IGD
indicates that it fails to approach the Pareto front. The observa-
tion of A-NSGA-III also implies that reference vector adaption
may not be strong enough to locate a lower-dimensional front
from a high-dimensional objective space. Fig. 15 further com-
pares the convergence curves of average IGD with the number
of generations. It can be seen that the proposed objective
reduction algorithm in SDEso and SDEonline promotes the
convergence of the many-objective optimizer.

Next, we consider a real-world problem, i.e., the water
resource problem. Since its Pareto front is unknown, the
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Fig. 15. Convergence curves of the average IGD (over 30 runs) obtained with
the number of generations for SDEref, SDEso, SDEonline, and A-NSGA-III
on 15-objective WFG3.

TABLE XIV
AVERAGE HV (INCLUDING THE STANDARD DEVIATION IN THE

BRACKET) AND THE AVERAGE COMPUTATION TIME

(IN SECONDS) OVER 30 RUNS ON THE WATER

RESOURCE PROBLEM

HV [12] is used as the performance metric and is computed
in the same way as that in [17]. Table XIV shows the average
HV along with the standard deviation and the average com-
putational time. From this table, the two objective reduction
assisted optimization algorithms, i.e., SDEso and SDEonline,
achieve considerable performance improvement over SDEref
in terms of HV. Unlike on 15-objective WFG3, A-NSGA-III
performs well on this problem and is even a little better than
SDEso and SDEonline. Given that the water resource problem
may only have one or two redundant objectives as depicted in
Section VI-A, the possible reason is that the reference vector
adaption in A-NSGA-III can effectively handle a slight degree
of degeneration of Pareto front here.

According to Tables XIII and XIV, the proposed objective
reduction algorithm can reduce the overall time of optimization
although it needs additional computational costs. This benefit
will become clearer when the underlying optimizer is an HV-
based MOEA or the objective computations of the MaOP are
expensive. The former scenario can be referred to the study
by Brockhoff and Zitzler [50], while the latter can be seen in
a recent work by Carreras et al. [62].

Although the effectiveness of objective reduction assisted
optimization has been shown by the experiments, we should
also realize its limitation. That is, if the objective reduction
algorithm fails to work properly, the removal of essential
objectives during optimization may bias the search process.
The manner of subsequent optimization is more prone to this
risk, since the removed objectives have no chance to be con-
sidered again. Nevertheless, based on our experimental results
and those in the literature (see [40], [53], [63]), combining

objective reduction with MOEAs is still a good avenue in
practical many-objective optimization, particularly for those
MaOPs with redundant objectives. The decomposition-based
algorithms with reference vector adaption [21], [64]–[66] may
be a competitive alternative for redundant MaOPs, but as far
as our experimental study on A-NSGA-III is concerned, this
kind of techniques do not show the clear advantage over objec-
tive reduction assisted optimization algorithms. In the future,
more experimental comparisons between the two classes of
techniques are still needed to further understand their strengths
and weakness.

B. On Visualization and Decision Making

It is important to visualize Pareto front approximations
in many-objective optimization, which can assist the user to
better understand the nondominated solutions obtained and
then make a final selection from them. There exist a num-
ber of many-objective visualization methods in the literature,
e.g., parallel coordinate plots, heatmaps, bubble chart. The
interested reader is referred to [34] or [35] for more details.
These methods can often provide a useful visualization, but
the representation of most of them can become very confus-
ing when the number of objectives or nondominated solutions
increases. The objective reduction approaches can remove
some redundant objectives and obtain a lower-dimensional
problem in some cases. If the number of objectives can be
reduced to two or three, e.g., for WFG3, the visualization will
be very intuitive. Otherwise, with the help of objective reduc-
tion, the visualization method used can still produce an easier
visualization for the user by considering fewer objectives and
a lower number of nondominated solutions.

Here, for illustration, we use the proposed NSGA-II-γ along
with a popular many-objective visualization method, i.e., par-
allel coordinate plots, on the DTLZ5(6, 20) problem. Given the
high number of objectives, the user usually uses a relatively
large population size, e.g., 500, to cover the high-dimensional
Pareto front with certain diversity. After running a optimizer,
e.g., SPEA2-SDE, the user will obtain a nondominated set
that is shown by the parallel coordinate plots in Fig. 16(a).
However, Fig. 16(a) is indeed very unclear for the user to
do visual analysis, and due to the misdirection, the non-
conflicting relationships between objectives are not reflected
obviously in this figure. After running NSGA-II-γ on the
nondominated set shown in Fig. 16(a), an essential objec-
tive set { f15, f16, f17, f18, f19, f20} is identified with the γ error
0.11, and the other objectives are regarded to behave in a
nonconflicting manner. So, the user can infer that the true
dimensionality of DTLZ5(6, 20) is much lower than 20 by
NSGA-II-γ , and he/she will tend to use a nondominated set
with a much smaller size, e.g., 50, for the appropriate cover-
age. To realize this, the user can first use the environmental
selection in SPEA2-SDE to pick out 50 diverse distributed
ones among the nondominated solutions in Fig. 16(a), and then
refine them by optimizing the essential objectives identified by
NSGA-II-γ . The final nondominated set obtained is shown in
Fig. 16(b). Clearly, Fig. 16(b) is much easier than Fig. 16(a)
for the user to comprehend and reveal good tradeoffs.
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(a) (b)

Fig. 16. Comparison of the parallel coordinate plots obtained (a) before and
(b) after objective reduction.

Due to the same reason as visualization, the objective reduc-
tion approaches can also ease the decision making of the user
to select the final solution for redundant MaOPs. Note that,
the proposed NSGA-II-η and NSGA-II-γ do not require that
each objective of the nondominated solution set is normalized
to the same range. But this is strongly recommended for deci-
sion making after the essential objectives are identified using
NSGA-II-η or NSGA-II-γ , which can avoid the inconvenience
in comparing differently scaled objective values. Moreover,
when using the dominance structure-based objective reduc-
tion algorithms, a possible scenario in the decision making is
that although two solutions are nondominated to each other
in the reduced objective space, they have big differences in
some removed objective dimensions. At this time, the user
may feel uncomfortable with just dropping these objectives,
because he/she would think that such differences are of con-
cern to his/her decision. We suggest a possible solution for
this scenario. That is, instead of completely neglecting the
removed objectives in the decision making, we aggregate them
into a single objective using a preferred aggregation func-
tion, and this objective together with the identified essential
objectives will be presented to the user for consideration. This
method can be expected to make a compromise between the
effect of objective reduction and the user’s concern about big
differences in removed objectives.

VIII. CONCLUSION

In this paper, we have conducted a study on evolutionary
multiobjective approaches to objective reduction. Specifically,
we propose to view objective reduction as a multiobjective
search problem and introduce three different multiobjective
formulations of this problem, aiming to preserve either the
dominance structure or the correlation structure of the given
sample set. For each multiobjective formulation, two conflict-
ing objectives are considered to be minimized simultaneously:
the first is the number of objectives selected (k) and the other
is the error (δ, η, or γ ) incurred by removing the unselected
objectives, Then, a multiobjective objective reduction algo-
rithm (NSGA-II-δ, NSGA-II-η, or NSGA-II-γ ) is formed by
employing NSGA-II to achieve a good tradeoff among the
two objectives and return a set of nondominated objective sub-
sets that can offer decision support to the user. Furthermore,
we have provided a detailed analysis of dominance structure-
and correlation-based approaches based on several theorems,
which is intended to clearly reveal the general strengths and

limitations of the two major kinds of objective reduction tech-
niques. Extensive experimental results and comparisons on a
wide range of problems demonstrate the effectiveness of the
proposed multiobjective approaches, and also unveil the char-
acteristics of the algorithms investigated, which agree well
with our theoretical analysis. The possible directions for future
research are suggested as follows.

1) Since dominance structure- and correlation-based
approaches have complementary advantages, it is possi-
ble to develop hybrid approaches that can combine the
merits of both while simultaneously overcoming their
disadvantages to a certain degree.

2) It is necessary to further investigate online objective
reduction based on the proposed algorithms. On one
hand, more advanced integration schemes need to be
developed. A possible way is to perform objective reduc-
tion and multiobjective optimization simultaneously
using the evolutionary multitasking paradigm [67]–[69].
On the other hand, the benefits of online objective reduc-
tion are worthy of further examination by extensive com-
parisons against decomposition-based algorithms with
reference vector adaption [21], [64]–[66].

3) There are only a few types of many-objective degen-
erate benchmark problems available in the literature
for objective reduction. It is very desirable to design
new benchmark problems with characteristics suitable
for comprehensive evaluation of objective reduction
algorithms.
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