
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Multiobjective Flexible Job Shop Scheduling Using
Memetic Algorithms

Yuan Yuan and Hua Xu

Abstract—In this paper, we propose new memetic algorithms
(MAs) for the mutiobjective flexible job shop scheduling problem
(MO-FJSP) with the objectives to minimize the makespan, total
workload and critical workload. The problem is addressed in a
Pareto manner, which aims to search for a set of Pareto opti-
mal solutions. First, by using well-designed chromosome encod-
ing/decoding scheme and genetic operators, the non-dominated
sorting genetic algorithm II (NSGA-II) is adapted for the MO-
FJSP. Then our MAs are developed by incorporating a novel
local search algorithm into the adapted NSGA-II, where some
good individuals are chosen from the offspring population for
local search using a selection mechanism. Furthermore, in the
proposed local search, a hierarchical strategy is adopted to handle
the three objectives, which mainly considers the minimization
of makespan, while the concern of the other two objectives is
reflected in the order of trying all the possible actions that could
generate the acceptable neighbor. In the experimental studies, the
influence of two alternative acceptance rules on the performance
of the proposed MAs is first examined. Afterwards, the effective-
ness of key components in our MAs is verified, including genetic
search, local search, and the hierarchical strategy in local search.
Finally, extensive comparisons are carried out with the state-of-
the-art methods specially presented for the MO-FJSP on well-
known benchmark instances. The results show that the proposed
MAs perform much better than all the other algorithms.

Note to Practitioners—The flexible job shop scheduling prob-
lem (FJSP) has important applications in textile, automobile
assembly, semiconductor manufacturing, and many other indus-
tries. In the flexible job shop, a group of machines are capable
for each operation, which is different from the traditional job
shop environment where each operation can be processed by
only a single machine. The FJSP is quite challenging, since
the decisions include not only operation sequencing but also
machine assignment. In the literature, the majority of studies for
the FJSP are centered on optimizing the makespan. However, a
single objective is deemed as insufficient for real and practical
applications. Indeed, in the industry, production managers are
usually concerned with more than one objective. This paper aims
to simultaneously minimize the makespan, total workload, and
critical workload for the FJSP, which can lead to both high
throughput and load balance of machines. This problem is solved
in the posterior approach, whose goal is to seek for a set of
Pareto optimal solutions. We propose effective memetic algo-
rithms (MAs) that combine a classical multiobjective evolutionary
technique referred as NSGA-II with a novel problem-specific local
search. To enhance the ability to deal with multiple objectives, a
hierarchical strategy is used in local search which gives varying
degrees of consideration to each objective. The effectiveness of
the proposed MAs is well demonstrated by extensive comparisons
against the existing best-performing algorithms for the considered
problem. This work can be extended to those practical problems

The authors are with the State Key Laboratory of Intelligent Technol-
ogy and Systems, Tsinghua National Laboratory for Information Science
and Technology, Department of Computer Science and Technology, Ts-
inghua University, Beijing 100084, PR China (e-mail: yyxhdy@gmail.com,
xuhua@tsinghua.edu.cn).

Corresponding author: H. Xu (e-mail: xuhua@tsinghua.edu.cn)

in the flexible manufacturing system. In addition, the idea to
deal with objectives hierarchically can be generalized for the
other production scheduling problems with multiple objectives,
such as hybrid flow shop, blocking flow shop, and no-wait job
shop.

Index Terms—Muti-Objective, flexible job shop scheduling,
memetic algorithm, non-dominated sorting genetic algorithm II
(NSGA-II), local search

I. INTRODUCTION

IN the field of production scheduling, the job shop schedul-
ing problem (JSP) is one of the most important issues

because of its complexity and practical applicability in real-
world situations. The flexible job shop scheduling problem
(FJSP) is a generalization of the classical JSP, where each
operation is allowed to be processed by any machine from
a given set, rather than one specified machine. Therefore,
in the FJSP, assignment of each operation to an appropriate
machine is also needed besides sequencing of operations on
each machine. Obviously, the FJSP is more complicated than
the JSP, and it has been proved that the FJSP is strongly NP-
hard even if each job has at most three operations and there
are two machines [1].

Over the past decades, the single-objective FJSP (SO-FJSP),
generally to minimize the makespan that is the time required
to complete all jobs, has been extensively studied in the
literature [2]–[9]. Compared to the SO-FJSP, the research
on the multiobjective FJSP (MO-FJSP) is relatively limited.
However, many real-world scheduling problems usually in-
volve simultaneous optimization of several objectives which
are in conflict to some extent. Thus, the MO-FJSP may be
closer to the realistic production environments and should
deserve enough attention. In recent years, the MO-FJSP has
captured more and more interest, and many algorithms have
been proposed. These methods to solve the MO-FJSP can
be roughly categorized into two types: priori approach and
posteriori approach.

In the priori approach, two or more objectives are usually
linear weighted and combined into a single measure. For
example, given n optimization criteria f1, f2, . . . , fn, a single
objective problem is derived with a linear weighting function
f =

∑n
i=1 wifi, where 0 ≤ wi ≤ 1,

∑n
i=1 wi = 1. However,

the linear weighted summation might not always represent
the trade-off relation between objectives. Besides, the deter-
mination of the weight coefficient wi for each objective is a
non-trivial task. The producers may run the prior approach
many times to obtain a satisfactory solution. According to the
existing literature, earlier research on the MO-FJSP mainly
concentrated on this approach. Xia and Wu [10] proposed a

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

hierarchical method using particle swarm optimization (PSO)
to assign operations on machines and simulated annealing
(SA) algorithm to sequence operations on each machine. Liu et
al. [11] presented a hybrid meta-heuristic combining PSO and
variable neighborhood search (VNS) to solve the MO-FJSP.
Gao et al. [12] developed a new genetic algorithm (GA) hy-
bridized with a bottleneck shifting procedure. Zhang et al. [13]
combined PSO and tabu search (TS) technique to deal with
the MO-FJSP, where TS was embedded into PSO as a local
search. Xing et al. [14] designed an efficient search method
for the MO-FJSP. In their paper, ten different sets of weights
were used in order to collect a set of solutions for each problem
instance. Li et al. [15] proposed a hybrid TS algorithm for the
MO-FJSP, in which neighborhood structures were developed
respectively for the machine assignment module and operation
scheduling module.

The posteriori approach is in fact more desirable. In this
approach, the solutions are compared based on the Pareto
dominance relation. A solution x is said to dominate a solution
y if x is not worse than y for all objective values and is better
than y for at least one objective value. A solution is optimal in
the Pareto sense if and only if it is not dominated by any other
solution. In contrast to the prior approach, which seeks for a
single optimal solution based on the aggregated objective, the
posteriori approach aims to seek for the set of Pareto optimal
solutions. The posteriori approach is run without the prior
information, and can exhibit the trade-off between objectives
through the distribution of obtained solutions in a single run.
It is helpful for the producers to evaluate these solutions and
make a decision. Very recently, to solve the MO-FJSP in
this Pareto way has been more concerned by the researchers.
Kacem et al. [16] proposed a Pareto approach based on the
hybridization of fuzzy logic (FL) and evolutionary algorithms
to solve the MO-FJSP. Ho and Tay [17] integrated a guided
local search procedure into the evolutionary algorithm, and an
elitism memory was also adopted to keep all non-dominated
solutions that have been found. Frutos et al. [18] introduced a
memetic algorithm (MA) based on the non-dominated sorting
genetic algorithm II (NSGA-II) [19], where SA algorithm was
employed as a local search process. Wang et al. [20] presented
a multiobjective GA based on immune and entropy principle
for the MO-FJSP. Moslehi and Mahnam [21] proposed a
new approach hybridizing PSO and local search. In [22] and
[23], a hybrid discrete artificial bee colony (ABC) algorithm
and a hybrid shuffled frog-leaping algorithm (SFLA) were
developed respectively by Li et al., both of which used
the mechanism of NSGA-II for individual evaluation. Li et
al. [24] also proposed a hybrid Pareto-based local search
embedding a VNS based self-adaptive strategy for the same
problem. Wang et al. [25] presented an enhanced Pareto-based
ABC algorithm, in which a mix of strategies to keep quality
and diversity of solutions are integrated. Rahmati et al. [26]
adapted two multiobjective evolutionary algorithms for the
MO-FJSP, and several metrics of the multiobjective evaluation
were introduced into the MO-FJSP literature. Rabiee et al.
[27] carried out a similar study, four existing muti-objective
evolutionary algorithms are adapted to the partial MO-FJSP
by them. Xiong et al. [28] developed a hybrid multiobjec-

tive evolutionary approach, where a local search based on
critical path was incorporated. Chiang et al. [29] proposed a
multiobjective evolutionary algorithm which utilizes effective
genetic operators and maintains population diversity carefully.
In their subsequent research [30], a muti-objective MA with
an embedded variable neighborhood descent (VND) procedure
was also developed.

Note that all the work on the MO-FJSP mentioned above
except for [11], [18] and [27] considered the makespan, total
workload and critical workload as objectives. In [11], the MO-
FJSP with the makespan and flowtime criteria was studied.
While in [18] and [27], only the makespan and total workload
objectives were involved.

As described above, the latest studies on the MO-FJSP are
more focused on the posteriori approach. Despite a number of
recent achievements on this subject, there still exists potential
for more research. In this paper, we adopt the posteriori
approach and propose new state-of-the-art memetic algorithms
(MAs), which hybridize NSGA-II based genetic search with
local search, for the MO-FJSP with the criteria to minimize
the makespan, total workload and critical workload. Our
contributions on the study of MO-FJSP may be reflected both
in algorithm design and experimental analysis.

In the aspect of algorithm design, the novelty can be
summarized as follows. First and foremost, a problem-specific
local search operator based on critical operations is proposed
for the MO-FJSP, stressing the exploitation of the problem
space. In this local search, a hierarchical strategy is used to
deal with the three objectives. That is, the minimization of
makespan is mainly concerned, while the consideration of
the other two objectives is embodied in the order of trying
all the possible actions that could generate the acceptable
neighbor. Second, a genetic search based on newly adapted
NSGA-II is developed for the MO-FJSP through well-designed
chromosome encoding, chromosome decoding, and genetic
operators, which focuses on the exploration of the problem
space. Third, the similar mechanism with that presented in
[31] is adopted to select individuals from the population for
local search, which could be beneficial to the balance between
local search and genetic search in our MAs. To our knowledge,
this mechanism is introduced into the research on MO-FJSP
for the first time.

As for the aspect of experimental analysis, the features lie
in the following. First, the contribution of key components in
our MAs to the overall performance, such as local search, is
examined through the experiments. Thus, unlike the existing
work, we not only show the effectiveness of MAs but also
disclose how each key component contributes to the whole
performance of MAs. Second, in the literature on the MO-
FJSP, the typical way of presenting algorithm performance
is to list the non-dominated solutions found over a certain
number of runs of the algorithm. Nevertheless, it seems to be
a little hard to tell how well the algorithm exactly performs
just in this way, which is more qualitative than quantitative.
Hence, it is necessary to bring in state-of-the-art quantitative
indicators for the multiobjective optimization to make the
evaluation more reasonable and sound. In fact, this practice is
not extraordinary for the existing research on many MO-COPs

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

[31]–[34]. But for the MO-FJSP, it is still far from common.
The rest of this paper is organized as follows. In the next

section, the background of MO-FJSP, NSGA-II, and MAs for
MO-COPs is given. In Section III, an overview of proposed
MAs is shown. The implementation details of the proposed
MAs, including genetic search and local search, are respec-
tively described in Section IV and Section V. Afterwards,
experimental studies are provided in Section VI. Finally, the
paper is summarized in Section VIII.

II. BACKGROUND

A. Formulation of the MO-FJSP

The MO-FJSP can be formulated as the following. There are
a set of n independent jobs J = {J1, J2, . . . , Jn} and a set of
m machines M = {M1,M2, . . . ,Mm}. A job Ji is formed by
a sequence of ni precedence constraint operations {Oi,1, Oi,2,
. . . , Oi,ni} to be performed one after another according to the
given sequence. Each operation Oi,j , i.e the jth operation of
job Ji, must be executed on one machine chosen from a given
subset Mi,j ⊆ M. The processing time of the operation is
machine dependent. pi,j,k is denoted to be the processing time
of Oi,j on machine Mk. The scheduling consists of two sub-
problems: the routing subproblem that assigns each operation
to an appropriate machine and the sequencing subproblem that
determines a sequence of operations on all the machines.

Let Ci be the completion time of job Ji. Wk is the
summation of processing time of operations that are processed
on machine Mk. Three objectives namely makespan, total
workload, and critical workload are to be minimized in this
paper, which are defined respectively as follows:

Cmax = max{Ci|i = 1, 2, . . . , n} (1)

WT =

m∑
k=1

Wk (2)

Wmax = max{Wk|k = 1, 2, . . . ,m} (3)

Moreover, the following assumptions are made in this
study: all the machines are available at time 0; all the jobs
are released at time 0; each machine can process only one
operation at a time; each operation must be completed without
interruption once it starts; the order of operations for each job
is predefined and cannot be modified; the setting up time of
machines and transfer time of operations are negligible.

For illustrating explicitly, a sample instance of FJSP is
shown in Table I, where rows correspond to operations and
columns correspond to machines. Each entry of the input
table denotes the processing time of that operation on the
corresponding machine. In this table, the tag “–” means that
a machine cannot execute the corresponding operation.

B. Disjunctive Graph Model

The disjunctive graph [35] is originally designed to repre-
sent the schedule of the JSP. Since the FJSP is an extension
of the JSP, it can be easily extended to describe the schedule
of the FJSP. Suppose that the disjunctive graph is represented
by G = {V,C ∪D}. V denotes a set of nodes, and each node

TABLE I
PROCESSING TIME TABLE OF AN INSTANCE OF FJSP.

Job Operation M1 M2 M3

J1 O1,1 1 – 3
O1,2 4 2 2

J2 O2,1 – 2 4
O2,2 1 2 3
O2,3 – – 2

J3 O3,1 4 2 3
O3,2 1 – 4

(excluding starting and ending nodes) represents an operation;
C is the set of conjunctive arcs, and each of them corresponds
to the precedence constraint within the same job; D is the
set of disjunctive arcs, and each of them corresponds to the
precedence of operations performed on the same machine. The
chosen machine for each operation is labeled above its node,
while the corresponding processing time is labeled below
and regarded as the weight of the node. Starting and ending
nodes have weight zero. If the disjunctive graph is acyclic,
it corresponds to a feasible schedule for the FJSP. And the
longest path from starting node to ending node is called
the critical path, whose length denotes the makespan. Any
operation on the critical path is called a critical operation.
In the later statement, we would not distinguish between
operations and nodes, schedules and disjunctive graphs.

Take the problem shown in Table I for instance, a possible
schedule represented by the disjunctive graph is depicted in
Fig. 1. In the disjunctive graph, there exist two critical paths
S → O2,1 → O2,2 → O2,3 → E and S → O3,1 → O2,3 → E
with lengths both equal to 5, so the makespan of this schedule
is 5. Operations O2,1 O2,2, O2,3 and O3,1 are all critical
operations.

1,1 1,2

3,1 3,2

2,1 2,2 2,3

M1

M1

M1

M2

M2

M3

M3

1 2

2 1 2

3 1

Conjunctive arc

Disjunctive arc

Oi,j Operation Oi,j

S Starting node

E Ending node

Fig. 1. Illustration of the disjunctive graph.

For the convenience of describing algorithms, we define
some notations based on the disjunctive graph G. Denote
µ(G, v) as the selected machine ID for a generic node v in G.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

Let ES(G, v) be its earliest starting time and LS(G, v, T) be
its latest starting time without delaying the required makespan
T . Correspondingly, the earliest and latest completion time
are denoted as EC(G, v) = EC(G, v) + pv,µ(G,v) and
LC(G, v, T) = LS(G, v, T) + pv,µ(G,v) respectively, where
pv,µ(G,v) is the processing time of node v on machine µ(G, v).
Denote PM(G, v) as the operation processed on the same
machine right before v and SM(G, v) as the one right after
v. Let PJ(v) be the operation that immediately precedes
v within the same job and SJ(v) be the one immediately
succeeds v. Let nc(G) be the number of critical operations in
G and χ(G) = {co1, co2, . . . , conc(G)} be the set of critical
operations.

An operation v is a critical operation, if and only if
ES(G, v) = LS(G, v, Cmax(G)). In addition, because we
only consider active schedules [36] in this study, the ac-
tual starting time of an operation in G is set as its earli-
est starting time. Take the disjunctive graph shown in Fig.
1 for instance, operation O2,2 is a critical operation, so
ES(G,O2,2) = LS(G,O2,2, 5) = 2; operation O1,2 is not
critical, ES(G,O1,2) = 2 and LS(G,O1,2, 5) = 3; if the
required makespan T = 6, then LS(G,O1,2, 6) = 4.

C. Brief Introduction to NSGA-II
The non-dominated sorting genetic algorithm II (NSGA-

II) [19] is a population-based multiobjective evolutionary
algorithm. The main procedure of NSGA-II can be briefly
described below.

Without loss of generality, the t-th generation of NSGA-
II is considered. Suppose that the parent population at this
generation is Pt, while the child population is Qt which is
created by using Pt and genetic operators. The size of Pt and
Qt are both N . Thereafter, the two populations Pt and Qt are
combined together to form a new population Rt = Pt ∪ Qt

(of size 2N). To choose the best N members from Rt for the
next generation, a process called non-dominated sorting is first
executed, which classifies Rt into different non-domination
levels (F1, F2 and so on). Then the new population Pt+1

is filled by members of different non-domination levels, one
at a time. This filling starts from the best non-domination
level F1 and continues with the second one F2, and so on.
Because the overall size of Rt is 2N , not all levels may
be accommodated in Pt+1, and they are simply neglected.
Moreover, in most situations, the last accepted level cannot
be completely included. Instead of arbitrarily discarding some
members from the last level, only those solutions that will
maximize the diversity of selected solutions are chosen. In
NSGA-II, this is achieved through using a niche strategy,
which computes the crowding distance for each member of last
level as the summation of objective-wise distance between two
nearest neighbors. Then, the solutions with larger crowding
distance values are selected. For further details of NSGA-II,
refer to [19].

D. Memetic Algorithms for Multiobjective Combinatorial Op-
timization

Memetic algorithms (MAs), which hybridize evolutionary
algorithms with local search, have shown high search ability

in single-objective combinatorial optimization problems (SO-
COPs). And a number of issues for designing these high
performing MAs for the SO-COPs have also been discussed
[37]–[39]. However, to develop high performing MAs for mul-
tiobjective combinatorial optimization problems (MO-COPs)
is even harder, and is not so largely explored.

In MAs for the MO-COPs, an unique problem lies in the
comparison of solutions in the local search. Generally, there
are two schemes for coping with this problem: One uses a
scalarizing function, and the other uses Pareto ranking. The
research in [40] indicated that better results are obtained from
the scalarizing function approach than the Pareto ranking
approach. Among scalarizing functions, weighted sum of
objectives is the most common one, which is first employed in
the well-known multiobjective genetic local search (MOGLS)
[41]. Recently, Sindhya et al. [42] presented a comprehensive
literature review on MAs for the multiobjective optimization
with different scalarizing functions adopted.

In practice, there exist many other issues that may affect
the performance of MAs for the MO-COPs. Some of them
are listed as follows:

1) How often should local search be applied?

2) To which solutions should local search be applied?

3) How long should local search be run?

4) Which local search procedure is to be used?
If the above issues are well addressed, it would be very
likely for the designed MA to maintain good balance be-
tween exploration (population-based) and exploitation (local
improvement) throughout the search, and thus to achieve good
performance. In the literature, some efforts have been made
on these issues. For example, Ishibuchi et al. [31] studied
how to strike a balance between genetic search and local
search in MAs for the multiobjective permutation flow shop
scheduling problem (MO-PFSP). Their experimental results
showed the importance of this balance. And when the bal-
ance is not appropriately specified, the performance of muti-
objective evolutionary algorithms is usually severely degraded
by hybridizing with local search. Ishibuchi et al. [43] also
examined the effect of the specification of the local search
probability on the performance of MAs for the MO-PFSP and
multiobjective 0/1 knapsack problem. This work suggested that
dynamically changing the local search probability is better
than specifying it as a constant value. In [44], the authors
assumed a situation where each objective has its own powerful
heuristic local search procedure. Then they proposed an idea
of using such heuristic local search procedures for single-
objective optimization in MOGLS. The results on the mul-
tiobjective 0/1 knapsack problem showed that this idea could
improve the performance of MOGLS. Garrett and Dasgupta
[45] conducted an empirical comparison of four MA strategies
on the multiobjective quadratic assignment problem. These
four strategies correspond roughly to “short bursts of local
search on all individuals”, “longer local search runs on all
individuals”, “short bursts of local search on randomly cho-
sen individuals”, and “longer local search runs on randomly
chosen individuals”.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

III. OVERVIEW OF THE PROPOSED MAS

The framework of the proposed MAs is based on the
original NSGA-II [19], which is depicted in Algorithm 1.
First, an initial population with N chromosomes is randomly
generated, where N is the population size. Then Steps 4-
18 are iterated until the termination criterion is satisfied.
In each generation t, the binary tournament selection, and
genetic operators (crossover and mutation) are first performed
to produce the offspring population Qt. Next the local search
algorithm is applied to Qt to obtain the improved population
Q′

t. In Step 6, the populations Pt, Qt and Q′
t are merged as the

population Rt. The individuals with the same objective values
in Rt are eliminated by doing the mutation to the duplicates in
Step 7. Finally, the best N individuals are selected as the next
population Pt+1 from Rt using fast non-dominated sorting and
crowding distance.

Algorithm 1 Framework of the proposed MAs
1: P0 ← InitializePopulation()
2: t← 0
3: while the termination criterion is not met do
4: Qt ← MakeOffspringPopulation(Pt)
5: Q′

t ← LocalSearch(Qt)
6: Rt ← Pt ∪Qt ∪Q′

t

7: Rt ← EliminateDuplicates(Rt)
8: {F1, F2, . . .} ← FastNonDominatedSort(Rt)
9: Pt+1 ← ∅

10: i← 1
11: while |Pt+1|+ |Fi| ≤ N do
12: CrowdingDistanceAssignment(Fi)
13: Pt+1 ← Pt+1 ∪ Fi

14: i← i+ 1
15: end while
16: Sort(Fi)
17: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
18: t← t+ 1
19: end while

From Algorithm 1, it can be seen that the implementation
of the proposed MAs concerns two crucial procedures. One is
how to produce the offspring population using genetic search,
corresponding to Step 4 in Algorithm 1. The other is how
to generate the improved population using local search to the
offspring population, corresponding Step 5 in Algorithm 1.

IV. EXPLORATION USING GENETIC SEARCH

In this section, we will detail the implementation of genetic
search in the proposed MAs, including chromosome encoding,
chromosome decoding and genetic operators.

A. Chromosome Encoding

A solution of the FJSP can be described by the assignment
of operations to machines and the processing sequencing of
operations on the machines. Therefore, a chromosome in the
proposed MAs consists of two vectors: machine assignment
vector and operation sequence vector, corresponding well to
two subproblems in the FJSP.

Before explaining the two vectors, we first consecutively
give a fixed ID for each operation in the form of j, where j =
1, 2, . . . , d with d =

∑n
i=1 ni. This means that the operations

1, . . . , n1 belong to job J1, n1 + 1, . . . , n1 + n2 belong to J2
and so on. After numbered, an operation can also be referred
to by the fixed ID, for example, in Table I, operation 4 has
the same reference with operation O2,2.

The machine assignment vector, which is denoted by
u = [u1, u2, . . . , ud], is an array of d integer values, where
1 ≤ uj ≤ lj , j = 1, 2, . . . , d, lj is the size of alternative
machine set for operation j. Let us sort available machines of
operation j in the non-decreasing order of the time they need
to execute operation j. If the same processing time is required,
the machine with smaller ID ranks ahead. Then, uj means
that operation j chooses the uj th one in its sorted available
machines.

The operation sequence vector, v = [v1, v2, . . . , vd], is an
ID permutation of all the operations. The order of occurrence
for each operation in the v indicates its scheduling priority. For
example, a possible operation sequence vector for the problem
shown in Table I is represented as v = [6, 1, 7, 3, 4, 2, 5]. And
it can be directly translated into a unique list of ordered op-
erations: O3,1 ≻ O1,1 ≻ O3,2 ≻ O2,1 ≻ O2,2 ≻ O1,2 ≻ O2,3.
Operation O3,1 has the highest priority and is scheduled first,
then operation O1,1, and so on. It must be noted that not all
the ID permutations are feasible for the operation sequence
vector because of the designated priority of operations lying
in a job. That is to say, the operations within a job should
keep the relative priority order in the v.

B. Chromosome Decoding

The decoding of the chromosome is to allocate a period
of time for each operation on its assigned machine one by
one according to their order in the v. When one operation
is treated, its selected machine is first got from the u, then
the idle time intervals between operations that have already
been scheduled on that machine are scanned from left to
right until an available one is found. Let si,j be the stating
time of a generic operation Oi,j in the schedule and ci,j its
completion time. Since an operation can only be started after
the completion of its immediate precedent operation within
the same job, the idle time interval [Sx, Ex] on machine Mk

is available for Oi,j , if{
max{Sx, ci,j−1}+ pi,j,k ≤ Ex, if j ≥ 2

Sx + pi,j,k ≤ Ex, if j = 1
(4)

When Oi,j is to be allocated in the available interval [Sx, Ex],
max{Sx, ci,j−1} (j ≥ 2) or Sx (j = 1) is taken as its
starting time. If no such interval exists on machine Mk for
Oi,j , it would be arranged at the end of Mk. A schedule
generated by using this decoding method can be ensured to be
an active schedule [46]. For example, a chromosome for the
problem shown in Table I, such as u = [1, 1, 1, 1, 1, 2, 1] and
v = [6, 1, 7, 3, 4, 2, 5], is just decoded into an active schedule
represented by the Gantt chart which is illustrated in Fig. 2.

In this decoding method, an operation is allowed to search
the earliest available idle time interval on the assigned machine
when scheduled. Hence, for two operations vi and vj assigned
on the same machine, vi may be stared earlier than vj in the
decoded schedule, while vj actually appears before vi in the

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Fig. 2. Gantt chart corresponding to the chromosome.

v. To make the operation sequence information well inherited,
when a chromosome is decoded, the operations in its v are
reordered according to their starting time in the corresponding
decoded schedule before it involves genetic operators.

C. Genetic Operators

The genetic operators in our MAs include crossover and
mutation, which are conducted to produce offsprings. The
crossover is applied to a pair of chromosomes, while the
mutation is applied to a single individual.

The crossover operators for two vectors in the chromosome
are implemented respectively. For the u, a subset of positions
are first randomly chosen, then generate the u of children
by exchanging the values of these selected positions between
two parents. As for the v, a modified order crossover [47]
is used. It can be described as follows. First, two points are
randomly picked, and operations between the two points in
the first parent are selected. Then, copy these operations to
the corresponding positions in the first child. Finally, complete
this child with the remaining operations, in the same priority
order they appear in the second parent. However, the obtained
operation sequence may be not feasible, due to the constraints
between operations within a job. So, a simple repair procedure
presented in Algorithm 2 is further executed to adjust the
relative order of operations in the same job. In Fig. 3, the
above crossover operator is illustrated for the problem shown
in Table I. The symmetric process is repeated for the second
parent and the second child.

Algorithm 2 RepairOperationSequence (v)
1: [q1, q2, . . . , qn]← [0, 0, . . . , 0]
2: for i = 1 to d do
3: Get the job Jk that the operation vi belongs to
4: qk ← qk + 1
5: Get the fixed ID op for the operation Ok,qk

6: vi ← op
7: end for

The mutation also consists of two parts. For the u, it is
achieved by changing the machine assignment of a single
operation that is chosen arbitrarily. With regards to the v,
the mutation is done by inserting an operation to another
position in the v without violating the designated priority
among operations of the same job, where both the operation
and the position are randomly selected.

Repair

Parent 1

Parent 2

Child 1

Child 1'

Fig. 3. Illustration of the crossover for the v.

V. EXPLOITATION USING LOCAL SEARCH

In this section, we will describe in detail how to do the local
search to the offspring population. There exist two parts for the
implementation. The first is the selection of individuals from
the offspring population for local search. The second is that,
once a chromosome is selected, we should further consider
how to refine it via local search in order to obtain several
improved ones, which are to be added into the improved
population.

A. Selection of Individuals for Local Search

In our MAs, a selection mechanism similar to that presented
in [31] is adopted. First, the following aggregation function is
defined:

f(x,λ) = λ1f1(x) + λ2f2(x) + λ3f3(x) (5)

where λ = [λ1, λ2, λ3] is a weight vector, f1(x), f2(x) and
f3(x) are directly set to three objectives of the MO-FJSP
defined in (1), (2) and (3) respectively. We generate a set of
uniformly distributed weight vectors, which meet the following
condition:

λ1 + λ2 + λ3 = z, λi ∈ {0, 1, . . . , z}, i = 1, 2, 3 (6)

Therefore, the number of the weight vectors is calculated
as C2

z+2. In this paper, z in (6) is set as 23 to produce
300 vectors for three objective problems. When selecting an
individual for local search, a weight vector is randomly drawn
from the weight vector set. Next, an individual is chosen
from the current population using tournament selection with
replacement based on (5) with the current weight vector.
Finally, the local search is applied to the chosen individual
to obtain a set Ei that contains a certain number of improved
solutions.

Another question is how often should local search be
applied. We introduce a local search probability Pls and
the number of ⌊N × Pls⌋ individuals are selected for local
search. In other words, the selection of an individual and the
applicability of local search are repeated ⌊N ×Pls⌋ times. All
the above-mentioned procedures are summarized in Algorithm
3.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

Algorithm 3 LocalSearch(Qt)
1: Q′

t ← ∅
2: for i = 1 to ⌊N × Pls⌋ do
3: Randomly draw a weight vector λ from the weight vector set
4: {u,v} ← TournamentSelectionWithReplacement(Qt,λ)
5: Ei ← LocalSearchForIndividual({u,v},λ)
6: Q′

t ← Q′
t ∪ Ei

7: end for
8: return Q′

t

B. Local Search to a Chromosome

So far, there is one last key issue remaining to be addressed.
That is the local search operator to a chromosome correspond-
ing to Step 5 in Algorithm 3. In our MAs, the proposed local
search is not directly applied to a chromosome, but in fact to
the decoded schedule of the chromosome, which is helpful for
introducing the problem-specific knowledge.

1) Neighbor Generation in Local Search: In our local
search, the neighbor of a schedule G is obtained by moving
an operation. Since the objective makespan is relatively harder
to be minimized, we accept the neighbor G′ of G if and only
if Cmax(G

′) ≤ Cmax(G). To make the move profitable, we
introduce the following theorem

Theorem 1: In the schedule G, if a new schedule G′ is
obtained by moving an operation Oi,j /∈ χ(G) in G, then
Cmax(G) ≤ Cmax(G

′).
Proof: Suppose that P be a critical path in G, which

is represented as S → co1 → . . . → col → E. Because
Oi,j /∈ χ(G), Oi,j is not on P . The move of Oi,j has the
following three possible situations: (1) move to the position
between two operations on one machine; (2) move to the
position ahead of all the operations on one machine; (3) move
to the position behind all the operations on one machine. For
the first situation, we assume that Oi,j is moved to the position
between operations ox and oy on one machine. It is obvious
that if there does not exist k ∈ {1, 2, . . . , l − 1}, cok = ox
and cok+1 = oy, then P would not be influenced and still
exists in G′. Hence, Cmax(G) ≤ Cmax(G

′). Otherwise, the
path S → co1 → . . . cok → Oi,j → cok+1 . . . → col → E
would exist in G′, and Cmax(G) < Cmax(G

′). Taken together,
Cmax(G) ≤ Cmax(G

′). As for the other two situations, the
proof is similar.

From Theorem 1, the makespan can only be improved by
moving critical operations, so only the critical operations are
considered to be moved in our local search.

Next, we discuss how to move a critical operation in G
as a result that the obtained neighbor schedule G′ is feasible
and Cmax(G

′) ≤ Cmax(G). Suppose a critical operation coi
in G is to be moved, first delete it from G to yield G−

i

by removing the disjunctive arc from coi and the disjunctive
arc to coi, connecting PM(G, coi) to SM(G, coi) with a
disjunctive arc, and set the weight of node coi as 0. Then, coi
is inserted into another feasible position in G−

i to obtain G′

so that Cmax(G
′) ≤ Cmax(G). If such a position locate before

operation v on machine Mk in G−
i , coi should be started as

early as EC(G−
i , PM(G−

i , v)), and can be completed as late
as LS(G−

i , v, Cmax(G)) without delaying Cmax(G). Besides,
coi must follow the precedence constraints within the same

job. Hence, if this position before v is said to be available for
coi to insert into, the following inequality should be satisfied

max{EC(G−
i , PM(G−

i , v)), EC(G−
i , PJ(coi))}+ pcoi,k

≤ min{LS(G−
i , v, Cmax(G)), LS(G−

i , SJ(coi), Cmax(G))}
(7)

But, in fact, the “<” not the “≤” is used in (7) in our local
search due to the following theorem

Theorem 2: The schedule G′ is obtained by inserting an
operation coi into a position located before operation v on
machine Mk in G−

i under (7) without equality. If Cmax(G
′) =

Cmax(G), then coi is not the critical operation in G′.
Proof: First, according to the definition, we have

ES(G′, coi) = max{EC(G′, PM(G−
i , v)),

EC(G′, PJ(coi))}
(8)

LS(G′, coi, Cmax(G
′)) = min{LS(G′, v, Cmax(G

′)),

LS(G′, SJ(coi), Cmax(G
′))} − pcoi,k

(9)

The insertion of coi would not change the earliest completion
time of PM(G−

i , v) and PJ(coi), and the latest starting time
of v and SJ(coi) without delaying Cmax(G), so we have

EC(G′, PM(G−
i , v)) = EC(G−

i , PM(G−
i , v)) (10)

EC(G′, PJ(coi)) = EC(G−
i , PJ(coi)) (11)

LS(G′, v, Cmax(G)) = LS(G−
i , v, Cmax(G)) (12)

LS(G′, SJ(coi), Cmax(G)) = LS(G−
i , SJ(coi), Cmax(G))

(13)
Since Cmax(G

′) = Cmax(G), we have

ES(G′, coi) ̸= LS(G′, coi, Cmax(G
′)) (14)

based on (8), (9), (10), (11), (12) and (13). Therefore, coi is
not the critical operation in G′.
According to Theorem 2, if Cmax(G

′) = Cmax(G), then coi
is not the critical operation in G′. Hence, it is guaranteed that
coi would not be moved in G′ in the next local iteration to
come back to G, which is helpful to avoid cyclic search as
much as possible.

However, to insert coi before v under (7) is met can not
ensure the yielded G′ is acyclic. Below, the positions to be
examined on machine Mk are restricted to only feasible ones.
Let Θk be the set of operations processed by machine Mk in
G−

i and ordered with the increasing of the earliest starting time
(note that coi /∈ Θk). Denote Φk and Ψk as two subsequences
of Θk and are defined as follows

Φk = {r ∈ Θk|ES(G, r) + pr,k > ES(G−
i , coi)} (15)

Ψk = {r ∈ Θk|LS(G, r, Cmax(G)) < LS(G−
i , coi, Cmax(G))}

(16)
Let Υk be the set of positions before all the operations of
Φk \ Ψk and after all the operations of Ψk \ Φk. Then the
following theorem holds

Theorem 3: In G−
i , the schedule obtained by inserting coi

into a position γ ∈ Υk is always feasible, and there exists a
position in the set Υk so that no better makespan can be got
by inserting coi into any other positions on machine Mk.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

The proof line of this theorem can be referred in [3].
According to Theorem 3, we have the direct corollary as
follows

Corollary 1: In G−
i , if a feasible schedule G′ satisfying

Cmax(G
′) ≤ Cmax(G) can be obtained by inserting coi into

a position on machine Mk, then there always exists such a
schedule that is yielded by inserting coi into a position in the
set Υk.

With Corollary 1, only the positions in Υk are checked when
reallocating a position on machine Mk for coi in G−

i , once
a position satisfying (7) is found, coi is inserted immediately
and an acceptable neighbor schedule G′ is formed to replace
the current schedule G. As can be seen, the first move
strategy is adopted in our local search where local search
accepts the first acceptable neighbor, because it is especially
computational expensive to check all the positions for all the
critical operations. Denote coi Mk as the action to find a
position on machine Mk for coi to insert into in G−

i . In
summarize, the action coi Mk is depicted in Algorithm 4.

Algorithm 4 InsertOperationOnMachine(G−
i , coi, k)

1: Get the set of positions Υk on machine Mk

2: for each position γ in Υk do
3: if γ satisfies (7) then
4: Insert coi into γ in G−

i

5: return true
6: end if
7: end for
8: return false

Algorithm 5 GetNeighborSchedule(G)
1: Get the set χ(G) = {co1, co2, . . . , conc}
2: [G−

1 , G
−
2 , . . . , G

−
nc]← [∅, ∅, . . . , ∅]

3: Sort φ(G) according to ∆t and ∆c

4: for each action coi Mk in the sorted φ(G) do
5: if G−

i = ∅ then
6: Clone a copy of G to G∗

7: Delete coi from G∗

8: G−
i ← G∗

9: end if
10: if InsertOperationOnMachine(G−

i , coi, k) then
11: G′ ← G−

i

12: return G′

13: end if
14: end for
15: return ∅

Let φ(G) = {coi Mk|i = 1, 2, . . . , nc,Mk ∈ Mcoi},
which consists of all

∑nc
i=1 lcoi possible actions described in

Algorithm 4 to form an acceptable neighbor G′ of G. The
concern of total workload and critical workload in our local
search is reflected in the order of trying these actions. We
define two metrics for each action coi Mk in φ(G) as follows

∆t(coi Mk) = pcoi,k − pcoi,µ(coi,G) (17)

∆c(coi Mk) = Wk(G) + pcoi,k (18)

It is clear that the metrics ∆t and ∆c consider the objectives
total workload and critical workload respectively. Based on the
two metrics, the actions in φ(G) are sorted according to the

non-decreasing order of ∆t. If two actions have the same ∆t

values, the one with lower ∆c value first. At one iteration of
local search, these actions are considered one after another in
the sorted order until an acceptable neighbor of G is obtained.
This procedure is illustrated in Algorithm 5.

From the above, a hierarchical strategy is in fact used in
our local search to deal with the three objectives, which can
be summed up as follows. First, we design the neighborhood
structure to ensure that the makespan is non-increasing during
a local iteration. In this premise, the neighbor with the smallest
total workload is chosen as the new schedule at each local
iteration. If there exist more than one such neighbor, the
critical workload is further considered.

2) Acceptance Rules in Local Search: Now, it is relatively
easy to form the procedure of local search to a chromosome
which is indeed an iterative process of Algorithm 5. The only
question is that what solutions that generated in the path of
local search should be accepted as the improved ones and
added into the improved population. Two different acceptance
rules are investigated in our local search, which are referred as
“Best” and “Pareto” respectively in this paper. The acceptance
rule “Best” is to choose the schedule with the lowest f(G,λ)
value in the path of local search as the improved solution.
In Algorithm 6, the local search operator to a chromosome
using the acceptance rule “Best” is summarized, where the
parameter itermax is the maximal iterations of local search.
As mentioned before, the proposed local search is not directly
applied to a chromosome, but in fact to the decoded schedule
of the chromosome, so the decoding procedure should be
executed in Step 2 before the local iterations. And after
the local iterations have been finished, the accepted schedule
needs to be encoded in Step 14 and returned in the form of
chromosome. As for the acceptance rule “Pareto”, it means
that, at each generation, the non-dominated ones among the
solutions located in all the local search paths for local search
individuals make up the improved population.

Algorithm 6 LocalSearchForIndividual({u,v}, λ)
1: i← 0
2: G← ChromosomeDecoding(u,v)
3: Gbest ← G
4: flag ← 0
5: while G ̸= ∅ and i < itermax do
6: G← GetNeighborSchedule(G)
7: if G ̸= ∅ and f(G,λ) < f(Gbest,λ) then
8: Gbest ← G
9: flag ← 1

10: end if
11: i← i+ 1
12: end while
13: if flag = 1 then
14: {u′,v′} ← ChromosomeEncoding(Gbest)
15: return {u′,v′}
16: end if
17: return ∅

VI. EXPERIMENTAL STUDIES

The proposed algorithms are all implemented in Java lan-
guage and run on an Intel Core i7-3520M 2.9GHz processor

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

with 8Gb of RAM. The algorithms are tested on four sets of
well-known benchmark instances including 5 Kacem instances
(ka4x5, ka08, ka10x7, ka10x10, ka15x10) [16], 10 BRdata
instances (Mk01-Mk10) [2], 18 DPdata instances (01a-18a)
[48], and 3 Hurink Vdata instances (la30, la35, la40) [49].
These sets cover almost all the problem instances ever adopted
in the literature on MO-FJSP. In fact, most existing studies
considered only a part of these instances. However, in our
experiments, all the 36 problem instances will be used so as
to make a comprehensive evaluation of all the implemented
algorithms.

Because of the different strategies employed in the global
search phase and local search phase, several variants of the
implemented algorithms will be involved in the experiments,
which are listed in Table II. MA-2 is different from MA-1
only in that it uses the “Pareto” acceptance rule in local search
instead of the “Best”. MA-1-NH and MA-2-NH correspond to
MA-1 and MA-2 respectively, and the only difference is that
neither of them uses the hierarchical strategy in local search.
In other words, when generating the acceptable neighbor in
local search, MA-1-NH (MA-2-NH) exams the actions in the
set φ(G) in the original order until an acceptable neighbor
is obtained. To verify the effectiveness of the genetic search,
the multi-start random local search (MRLS) algorithms are
also designed. Specifically, MRLS-1 (MRLS-2) is formed by
replacing the genetic operators in MA-1 (MA-2) with random
generating method to produce new solutions. The NSGA-
II here is an adapted version for the MO-FJSP, in which
the chromosome representation and genetic operators of the
proposed MAs are directly used. It is a pure genetic-based
search algorithm without local search.

TABLE II
VARIANTS OF THE IMPLEMENTED ALGORITHMS.

Variant Global Search
Local Search

Acceptance Rule Hierarchical Strategy

MA-1 Genetic Best Yes
MA-2 Genetic Pareto Yes

MA-1-NH Genetic Best No
MA-2-NH Genetic Pareto No
MRLS-1 Random Best Yes
MRLS-2 Random Pareto Yes
NSGA-II Genetic – –

The parameter settings of the implemented algorithms are
listed in Table III. We adopt the uniform parameter values
for these algorithms. Each algorithm will be terminated when
the predefined number of examined solutions is exhausted.
This limit is set to 150,000, 500,000, and 1,000,000 for
the Kacem instances, BRdata instances and the remaining
instances respectively, and is the same for all the implemented
algorithms to ensure a fair comparison. For each problem
instance, all the algorithms listed in Table II are independently
run 30 times.

A. Performance Metrics

In order to evaluate the performance of the proposed algo-
rithms, the inverted generational distance (IGD) [50] and the

TABLE III
PARAMETER SETTINGS OF THE IMPLEMENTED ALGORITHMS.

Parameter Value

Population size (N) 300
Crossover probability (Pc) 1.0
Mutation probability (Pm) 0.1
Local search probability (Pls) 0.1
Maximal iterations of local search (itermax) 50
Tournament size for local search solution selection (St) 20

set coverage [51] are used as indicators in our experiments.
They can be expressed as follows:

1) Inverted Generational Distance: Let P ∗ be a set of
uniformly distributed points along the Pareto front (PF). Let
A be an approximation to the PF. The metric IGD of the set
A is defined as:

IGD(A,P ∗) =
1

|P ∗|
∑
x∈P∗

min
y∈A

d(x, y) (19)

where d(x, y) is the Euclidean distance between the points
x and y. If |P ∗| is large enough to represent the PF, the
IGD(A,P ∗) could measure both the diversity and convergence
of A in a sense. To have a small value of IGD(A,P ∗), A must
be very close to P ∗ and cannot miss any part of P ∗.

In this study, the metric IGD is computed based on the
normalized objective vectors of the non-dominated solutions,
which could be obtained by

f̃i(x) = (fi(x)− fmin
i)/(fmax

i − fmin
i), i = 1, 2, 3 (20)

where fmax
i and fmin

i are the maximal and minimal values of
fi(x) among all the results obtained over all runs by all the
compared algorithms for the MO-FJSP.

2) Set Coverage: Let A and B be two approximations to
the PF, the set coverage C(A,B) represents the percentage of
solutions in B that are dominated by at least one solution in
A, i.e.

C(A,B) =
|{x ∈ B|∃y ∈ A : y dominates x}|

|B|
(21)

C(B,A) is not necessarily equal to 1−C(A,B). If C(A,B)
is large and C(B,A) is small, then A is better than B in a
sense.

Since the actual PFs for test instances are not known, P ∗ is
mainly formed for each problem instance by gathering all non-
dominated solutions found by all the implemented algorithms
in all runs. In addition, the non-dominated solutions obtained
by the algorithms in the literature [23], [24], [29], [30] are also
included. These P ∗ sets together with the detail computational
results in this paper are available on the website1 for future
use of other researchers.

B. Investigation of the Acceptance Rules in Local Search

To investigate the impact of two different acceptance rules
(“Best” and “Pareto”) in local search on the proposed MAs, the
performance comparison between MA-1 and MA-2 is carried
out in this subsection.

1http://learn.tsinghua.edu.cn:8080/2012310563/TASE-MOFJSP-Results.rar

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

TABLE IV
COMPARISON OF TWO DIFFERENT ACCEPTANCE RULES IN LOCAL
SEARCH ON AVERAGE IGD AND SET COVERAGE VALUES OVER 30

INDEPENDENT RUNS FOR ALL 36 PROBLEM INSTANCES.

Instance n × m Flex.
IGD MA-1 (A) vs MA-2 (B)

MA-1 MA-2 C(A,B) C(B,A)

ka4x5 4 × 5 5 0.000000 0.000000 0.000000 0.000000
ka08 8 × 8 6.48 0.000000 0.000000 0.000000 0.000000

ka10x7 10 × 7 7 0.000000 0.000000 0.000000 0.000000
ka10x10 10 × 10 10 0.033793 0.092931 0.000000 0.000000
ka15x10 15 × 10 10 0.002778 0.000000 0.000000 0.044444

Mk01 10 × 6 2.09 0.001569 0.001774 0.035455 0.023333
Mk02 10 × 6 4.1 0.009685 0.006263 0.052315 0.131944
Mk03 15 × 8 3.01 0.000000 0.000000 0.000000 0.000000
Mk04 15 × 8 1.91 0.005937 0.006307 0.143948 0.122322
Mk05 15 × 4 1.71 0.003265 0.005062 0.003030 0.003030
Mk06 10 × 15 3.27 0.039592 0.040446 0.252925 0.499238
Mk07 20 × 5 2.83 0.000000 0.000181 0.006250 0.000000
Mk08 20 × 10 1.43 0.000000 0.000000 0.000000 0.000000
Mk09 20 × 10 2.52 0.002534 0.001927 0.110502 0.220580
Mk10 20 × 15 2.98 0.032299 0.026703 0.229056 0.663331
01a 10 × 5 1.13 0.142513 0.121680 0.366667 0.550000
02a 10 × 5 1.69 0.029790 0.034413 0.527354 0.364881
03a 10 × 5 2.56 0.022955 0.029485 0.582381 0.375278
04a 10 × 5 1.13 0.017067 0.020658 0.413626 0.282165
05a 10 × 5 1.69 0.029702 0.027830 0.373163 0.525628
06a 10 × 5 2.56 0.020006 0.020205 0.517712 0.410313
07a 15 × 8 1.24 0.138625 0.104688 0.376984 0.544444
08a 15 × 8 2.42 0.025773 0.038654 0.602632 0.282778
09a 15 × 8 4.03 0.035028 0.026466 0.266865 0.613413
10a 15 × 8 1.24 0.040129 0.036169 0.349751 0.606132
11a 15 × 8 2.42 0.024052 0.020052 0.285550 0.603962
12a 15 × 8 4.03 0.017390 0.015395 0.349964 0.534587
13a 20 × 10 1.34 0.058361 0.061297 0.581839 0.269497
14a 20 × 10 2.99 0.041484 0.030463 0.183185 0.732829
15a 20 × 10 5.02 0.036633 0.021958 0.161310 0.809418
16a 20 × 10 1.34 0.043449 0.047622 0.383714 0.498220
17a 20 × 10 2.99 0.022545 0.015152 0.142421 0.742204
18a 20 × 10 5.02 0.019398 0.015005 0.298604 0.582840
la30 20 × 10 4.65 0.040453 0.035973 0.196376 0.700000
la35 30 × 10 4.65 0.016722 0.012918 0.169444 0.613889
la40 15 × 15 6.48 0.028966 0.016913 0.181508 0.717222
For each instance and each metric, the result that is significantly better than the other is marked in bold (with
smaller IGD, with greater set coverage).

In Table IV, average IGD and set coverage values over 30
independent runs of MA-1, MA-2 on all 36 problem instances
are presented. The characteristics of the instances are also
provided. The first column symbolizes the name for each
instance; the second column shows the size of the instance, in
which n stands for the number of jobs and m represents the
number of machines; the third column lists the flexibility of
each instance, which means the average number of alternative
machines for each operation in the problem. For each instance
and each performance metric (IGD and set coverage), the
Wilcoxon signed-rank test [52] is further carried out on the
results obtained by 30 runs of the compared algorithms, and
the one that is significantly better than that of the others
(with the significance level of 0.05) is marked in bold. In the
following Tables V, VI and VII, the number in bold would
indicate the same meaning.

From Table IV, MA-1 is significantly better than MA-
2 on the instance ka10x10 and 3 DPdata instances. MA-2
significantly outperforms MA-1 on 15 out of total 36 instances,
including 3 BRdata instances, 9 DPdata instances, and all

3 Hurink Vdata instances. There are remaining 17 problem
instances on which neither of MA-1 and MA-2 performs sig-
nificantly better than the other. As for the set coverage metric,
MA-1 is significantly better than MA-2 on the instances 08a
and 13a. MA-2 performs significantly better than MA-1 on
4 BRdata instances, 8 DPdata instances, and all 3 Hurink
Vdata instances. There are all 5 Kacem instances, 6 BRdata
instances, 8 DPdata instances on which the results have no
statistical significance.

As a whole, it seems that MA-2 performs better on the
considered problem instances. However, MA-1 still exhibits a
little stronger search ability than MA-2 on several instances.
In addition, there exists no significant advantage for MA-1
or MA-2 on almost half of all the instances. In conclusion,
the “Pareto” acceptance rule is preferred for the proposed
MAs according to the computational results, but the “Best”
acceptance rule may be more suitable in certain cases.

C. Effect of Hybridizing Genetic Search and Local Search

In this subsection, the experiments and comparisons are
conducted between MA-1 (MA-2) with NSGA-II and MRLS-1
(MRLS-2) algorithms to show the effectiveness of hybridizing
genetic-based global search and problem-specific local search.
We would like to gain a better understanding of why the
proposed MAs work through these experiments.

In Table V, average IGD values over 30 independent runs
for all 36 problem instances are reported. Four algorithm vari-
ants are divided into two groups: {MA-1, MRLS-1, NSGA-
II} and {MA-2, MRLS-2, NSGA-II} for the comparing. For
the first group, it is clear that MA-1 is the winner since the
results of IGD generated by MA-1 are significantly better than
those by MRLS-1 and NSGA-II on overwhelming majority
of all instances. And there exists no statistical significance
between the three algorithms on the rest instances. As for the
second group, the situation is similar to the first one. it is
easily observed that MA-2 significantly outperforms MRLS-
2 and NSGA-II on 31 out of total 36 instances in terms of
IGD metric. Neither of MRLS-2 and NSGA-II is significantly
better than the other two algorithms on any instance. Table VI
shows the results of set coverage by comparing MA-1 (MA-2)
with MRLS-1 (MRLS-2) and NSGA-II. From Table VI, it is
obvious that the results obtained by MA-1 (MA-2) are much
better than those by MRLS-1 (MRLS-2) and NSGA-II.

Based on the above results and comparisons, it is concluded
that MA-1 (MA-2) is much more powerful than MRLS-1
(MRLS-2) and NSGA-II, which well demonstrates the effec-
tiveness of genetic search, local search, and the hybridization.
The success of our MAs could be attributed that MA-1 (MA-2)
integrates the advantages of genetic search for diversification
and local search for intensification, which well achieves the
balance between exploration and exploitation.

D. Effect of the Hierarchical Strategy in Local Search

In this subsection, we would demonstrate the effectiveness
of the hierarchical strategy used in local search. Thus, the
comparison between MA-1 (MA-2) and MA-1-NH (MA-2-
NH) is carried out. It can be observed from Tables VII that

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

TABLE V
PERFORMANCE EVALUATION OF THE EFFECT OF HYBRIDIZING GENETIC

SEARCH AND LOCAL SEARCH USING AVERAGE IGD VALUES OVER 30
INDEPENDENT RUNS FOR ALL 36 PROBLEM INSTANCES.

Instance
IGD IGD

MA-1 MRLS-1 NSGA-II MA-2 MRLS-2 NSGA-II

ka4x5 0.000000 0.047126 0.000000 0.000000 0.004167 0.000000
ka08 0.000000 0.058269 0.000833 0.000000 0.009167 0.000833

ka10x7 0.000000 0.000000 0.007407 0.000000 0.000000 0.007407
ka10x10 0.033793 0.081590 0.134327 0.092931 0.052079 0.134327
ka15x10 0.002778 0.313175 0.280442 0.000000 0.294616 0.280442

Mk01 0.001569 0.101091 0.035556 0.001774 0.090541 0.035556
Mk02 0.009685 0.128757 0.050101 0.006263 0.119288 0.050101
Mk03 0.000000 1.007897 0.000202 0.000000 0.953574 0.000202
Mk04 0.005937 0.251465 0.023388 0.006307 0.233541 0.023388
Mk05 0.003265 0.243095 0.012698 0.005062 0.209437 0.012698
Mk06 0.039592 0.452603 0.073385 0.040446 0.453476 0.073385
Mk07 0.000000 0.292828 0.006943 0.000181 0.278908 0.006943
Mk08 0.000000 0.655307 0.000000 0.000000 0.603192 0.000000
Mk09 0.002534 0.462225 0.014184 0.001927 0.439581 0.014184
Mk10 0.032299 0.750063 0.071379 0.026703 0.723913 0.071379
01a 0.142513 0.648216 0.148463 0.121680 0.592304 0.148463
02a 0.029790 0.266288 0.059942 0.034413 0.248628 0.059942
03a 0.022955 0.260912 0.065892 0.029485 0.226697 0.065892
04a 0.017067 0.152115 0.029280 0.020658 0.130728 0.029280
05a 0.029702 0.351096 0.058806 0.027830 0.337028 0.058806
06a 0.020006 0.539079 0.086530 0.020205 0.510495 0.086530
07a 0.138625 0.419420 0.157773 0.104688 0.406506 0.157773
08a 0.025773 0.439693 0.112187 0.038654 0.425074 0.112187
09a 0.035028 0.408097 0.117332 0.026466 0.402469 0.117332
10a 0.040129 0.312350 0.092129 0.036169 0.300337 0.092129
11a 0.024052 0.535776 0.089533 0.020052 0.516628 0.089533
12a 0.017390 0.788284 0.113920 0.015395 0.767139 0.113920
13a 0.058361 0.528276 0.086919 0.061297 0.510652 0.086919
14a 0.041484 0.509893 0.140580 0.030463 0.491917 0.140580
15a 0.036633 0.509471 0.111058 0.021958 0.493920 0.111058
16a 0.043449 0.439592 0.102748 0.047622 0.422147 0.102748
17a 0.022545 0.707046 0.132775 0.015152 0.701669 0.132775
18a 0.019398 0.942038 0.187137 0.015005 0.919420 0.187137
la30 0.040453 0.332309 0.108040 0.035973 0.310914 0.108040
la35 0.016722 0.440808 0.089383 0.012918 0.432735 0.089383
la40 0.028966 0.417990 0.140409 0.016913 0.400358 0.140409

For each instance, the result that is significantly better than the others is marked in bold (with smallest IGD).

the hierarchical strategy in local search further improve the
performance of the proposed MAs.

Specifically, for the IGD metric, MA-1 is significantly better
than MA-1-NH on 2 Kacem instances, 7 BRdata instances and
11 DPdata instances, and is significantly outperformed by MA-
1-NH on only instances 15a and la35. As for the set coverage
metric, MA-1 significantly outperforms MA-1-NH on 20 out
of total 36 instances, and MA-1-NH is significant better than
MA-1 also only on instances 15a and la35. The hierarchical
strategy shows the similar power in MA-2. MA-2 performs
significantly better than MA-2-NH on 24 out 36 instances in
terms of both IGD metric and set coverage metric. MA-2-NH
is significantly better than MA-2 only on the instance Mk05
in terms of IGD metric, and fails to significantly outperform
MA-2 on any instance in terms of set coverage metric. Also
of note is that the proposed hierarchical strategy seems to be
especially beneficial for solving those instances with a larger
number of non-dominated solutions, such as Mk09, Mk10, 11a
and so on.

E. Comparison with State-of-the-Art Algorithms

In this subsection, the proposed MAs with excellent per-
formance (MA-1 and MA-2) are compared with the existing
state-of-the-art methods. To the best of our knowledge, there
exists no algorithm for the MO-FJSP in the literature which
is evaluated on all 36 problem instances considered in this
paper. Thus, we choose those most representative ones as
the benchmark algorithms on each data set. Moreover, as
mentioned in Section I, in the literature on MO-FJSP, the
performance of an algorithm is generally presented by list-
ing all the non-dominated solutions collected over a certain
number of runs. However, few algorithms report the results
for each run. Hence, the statistical comparison just like that
in the previous three subsections seems to be impossible to
be conducted between the proposed MAs and the existing
algorithms in the literature, although we think that this kind
of comparison is more justified than the comparison of non-
dominated solutions found over several runs. As regards the
comparison in this part, for each instance and each algorithm,
the metrics IGD and set coverage are computed for the set of
non-dominated solutions collected over several runs. And the
number of runs of MA-1 (MA-2) on each data set is set by the
minimum number of runs used by the compared algorithms to
avoid taking advantage of the compared algorithms.

In Tables VIII, IX, and X, MA-1 (MA-2) is compared on
Kacem instances and BRdata instances with four algorithms
recently proposed for the MO-FJSP, which are called HSFLA
[23], PLS [24], SEA [29] and CMA [30] respectively in this
paper. HSFLA is not evaluated on the instances ka4x5 and
ka10x7, and PLS only considers 4 in 10 BRdata instances.
Both HSFLA and PLS run 20 times for each instance, while
SEA runs only 10 times. As for CMA, four variants of
parameters are used, and each variant of CMA is run 10 times.
So, CMA in fact runs total 40 times for each instance. The
number of runs for the proposed MA-1 (MA-2) is set to 10.

First, it can be seen from Tables VIII, IX, and X that each
of the six referred algorithms finds all the non-dominated
solutions in the reference set for each Kacem instance over
its defined number of runs. Next, we focuss only on BRdata
instances. As for the IGD metric, MA-1 yields the best results
on 7 out of 10 BRdata instances, and MA-2 achieves best on
8 out of 10 instances except Mk04 and Mk06. It seems that
both of HSFLA and PLS perform relatively worse than the
other four algorithms, because both of them are outperformed
by the other algorithms on each BRdata instance in terms of
IGD value. CMA obtains the best IGD value on the instance
Mk06. But it should be noted that the results of CMA are
based on many more number of runs. We also find that if the
number of runs of MA-1 (MA-2) is extended to 30 times, the
mentioned dominance of CMA on the instance Mk06 would
disappear. MA-1 and MA-2 are compared respectively with
the other algorithms in Tables IX and X using set coverage
values. It is clearly indicated from the two tables that MA-1
(MA-2) is superior to all the compared algorithms in searching
the non-dominated solutions. In Table XI, we compare the
average running time consumed by MA-1, MA-2 and HSFLA.
However, the different computing hardware, programming

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

TABLE VI
PERFORMANCE EVALUATION OF THE EFFECT OF HYBRIDIZING GENETIC SEARCH AND LOCAL SEARCH USING AVERAGE SET

COVERAGE VALUES OVER 30 INDEPENDENT RUNS FOR ALL 36 PROBLEM INSTANCES.

Instance
MA-1 (A) vs MRLS-1 (C) MA-1 (A) vs NSGA-II (E) MA-2 (B) vs MRLS-2 (D) MA-2 (B) vs NSGA-II (E)

C(A,C) C(C,A) C(A,E) C(E,A) C(B,D) C(D,B) C(B,E) C(E,B)

ka4x5 0.041667 0.000000 0.000000 0.000000 0.016667 0.000000 0.000000 0.000000
ka08 0.313333 0.000000 0.008333 0.000000 0.110000 0.000000 0.008333 0.000000

ka10x7 0.000000 0.000000 0.033333 0.000000 0.000000 0.000000 0.033333 0.000000
ka10x10 0.033333 0.000000 0.185000 0.000000 0.008333 0.000000 0.185000 0.000000
ka15x10 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000

Mk01 0.943749 0.000000 0.747222 0.000000 0.945949 0.000000 0.752564 0.016061
Mk02 0.916005 0.000000 0.577838 0.003704 0.909114 0.000000 0.588899 0.000000
Mk03 1.000000 0.000000 0.025490 0.000000 1.000000 0.000000 0.025490 0.000000
Mk04 1.000000 0.000000 0.274072 0.004000 0.994444 0.000000 0.277258 0.004615
Mk05 0.896971 0.000000 0.070260 0.003030 0.780210 0.000000 0.076573 0.000000
Mk06 1.000000 0.000000 0.444094 0.259674 1.000000 0.000000 0.549810 0.162620
Mk07 1.000000 0.000000 0.176634 0.000000 1.000000 0.000000 0.176634 0.006250
Mk08 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000
Mk09 1.000000 0.000000 0.808463 0.025715 1.000000 0.000000 0.824307 0.012114
Mk10 1.000000 0.000000 0.562177 0.235564 1.000000 0.000000 0.662532 0.167871
01a 1.000000 0.000000 0.600000 0.316667 1.000000 0.000000 0.600000 0.400000
02a 0.996296 0.000000 0.872778 0.110370 0.978782 0.000000 0.794444 0.137077
03a 0.994444 0.000000 0.937778 0.011111 0.974352 0.010833 0.891905 0.064127
04a 1.000000 0.000000 0.546229 0.143587 1.000000 0.000000 0.533477 0.166952
05a 1.000000 0.000000 0.754491 0.134465 1.000000 0.000000 0.790380 0.098991
06a 1.000000 0.000000 0.985997 0.000641 1.000000 0.000000 0.982198 0.002925
07a 1.000000 0.000000 0.616667 0.311111 1.000000 0.000000 0.764444 0.173333
08a 1.000000 0.000000 0.906111 0.011111 0.997436 0.000000 0.886111 0.061706
09a 1.000000 0.000000 0.843980 0.018704 1.000000 0.000000 0.973016 0.000000
10a 1.000000 0.000000 0.877519 0.097341 0.999660 0.000000 0.871207 0.092518
11a 1.000000 0.000000 0.813326 0.066952 1.000000 0.000000 0.856821 0.041296
12a 1.000000 0.000000 0.994903 0.000290 1.000000 0.000000 0.994900 0.000233
13a 1.000000 0.000000 0.529982 0.170424 1.000000 0.000000 0.447590 0.215780
14a 1.000000 0.000000 0.849749 0.036574 1.000000 0.000000 0.987963 0.000000
15a 1.000000 0.000000 0.805833 0.047884 1.000000 0.000000 0.993333 0.000000
16a 1.000000 0.000000 0.656102 0.118672 1.000000 0.000000 0.661786 0.090860
17a 1.000000 0.000000 0.945089 0.005143 1.000000 0.000000 0.966387 0.000953
18a 1.000000 0.000000 0.999274 0.000000 1.000000 0.000000 1.000000 0.000000
la30 1.000000 0.000000 0.891534 0.010833 1.000000 0.000000 0.947222 0.014286
la35 1.000000 0.000000 0.985000 0.000000 1.000000 0.000000 1.000000 0.000000
la40 1.000000 0.000000 0.823611 0.008466 1.000000 0.000000 0.936667 0.000000

For each instance, the result that is significantly better than the other is marked in bold (with greater set coverage).

platforms and coding skills used in each algorithm make this
comparison notoriously problematic [53]. Hence, we enclose
the original name of the CPU, the programming language,
and the original running time for the corresponding algorithm,
which is enough for us to have a roughly understanding
of the efficiency of referred algorithms. This practice has
been often adopted in the existing research of the JSP [54],
[55]. From Table XI, it seems that HSFLA is generally more
computational expensive than the proposed MAs.

In Table XII, MA-1 (MA-2) is compared with MOGA [20]
on DPdata instances. All the three algorithms are indepen-
dently run 10 times. From the results of IGD, it can be
observed that MA-1 (MA-2) outperforms MOGA on DPdata
instances by a large margin. As for the computational time,
MA-1 (MA-2) also shows superiority in most of considered
instances. Moreover, he absolute dominance of MA-1 (MA-
2) over MOGA can be more easily demonstrated in terms
of set coverage values, which indicate that, for each instance,
every solution obtained by MOGA is dominated by at least one
solution by MA-1 (MA-2), and none of the solutions obtained
by MA-1 (MA-2) is dominated by any solution by MOGA.

In Table XIII, the proposed MA-1 (MA-2) is compared

with MOEA-GLS [17] on 3 Hurink Vdata instances. The
number of runs for the three referred algorithms is set to 30.
Because there exist only a few non-dominated solutions for
the 3 instances, the solutions found over 30 independent runs
by each algorithm are directly listed In Table XIII. For the
instances la30 and la40, all the solutions obtained by MA-1
and MOEA-GLS are dominated by at least one solution from
MA-2, and none of solutions obtained by MA-2 is dominated
by solutions from the other two algorithms. For the instance
la35, all the three algorithms find the same non-dominated
solution. Table XIV indicates MA-1 (MA-2) seems much less
time consuming than MOEA-GLS.

Although our MA-1 (MA-2) is specially proposed for
the MO-FJSP, the minimization of makespan is considered
mostly in them. Thus, in Table XV, we also compare their
performance only in terms of the best makespan obtained
with two state-of-the art algorithms for the SO-FJSP, which
are TS of Mastrolilli and Gambardella [3], and CDDS of
Hmida et al. [7]. The fourth column in Table XV lists the
best known solution (BKS) ever reported in the literature
for each instance. From Table XV, MA-1 (MA-2) achieves
competitive performance with respect to TS and CDDS on

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 13

TABLE VII
PERFORMANCE EVALUATION OF THE EFFECT OF THE HIERARCHICAL STRATEGY IN LOCAL SEARCH USING AVERAGE IGD

AND SET COVERAGE VALUES OVER 30 INDEPENDENT RUNS FOR ALL 36 PROBLEM INSTANCES.

Instance
IGD MA-1 (A) vs MA-1-NH (C) IGD MA-2 (B) vs MA-2-NH (D)

MA-1 MA-1-NH C(A,C) C(C,A) MA-2 MA-2-NH C(B,D) C(D,B)

ka4x5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ka10x7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka10x10 0.033793 0.070134 0.116667 0.000000 0.092931 0.071523 0.127778 0.000000
ka15x10 0.002778 0.156178 0.900000 0.000000 0.000000 0.136906 0.838889 0.000000

Mk01 0.001569 0.022960 0.489172 0.000000 0.001774 0.015994 0.348780 0.016061
Mk02 0.009685 0.034411 0.483089 0.020370 0.006263 0.027675 0.424478 0.012500
Mk03 0.000000 0.000202 0.025490 0.000000 0.000000 0.000136 0.019390 0.000000
Mk04 0.005937 0.009063 0.379759 0.020682 0.006307 0.008421 0.321268 0.040832
Mk05 0.003265 0.000000 0.000000 0.003030 0.005062 0.000000 0.000000 0.003030
Mk06 0.039592 0.057145 0.732628 0.121220 0.040446 0.054947 0.829041 0.061756
Mk07 0.000000 0.001130 0.042361 0.000000 0.000181 0.002145 0.065833 0.000000
Mk08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mk09 0.002534 0.017960 0.908416 0.006954 0.001927 0.019248 0.921462 0.005524
Mk10 0.032299 0.096543 0.924833 0.014070 0.026703 0.082840 0.923299 0.011510
01a 0.142513 0.130129 0.433333 0.533333 0.121680 0.114516 0.455556 0.500000
02a 0.029790 0.034487 0.509114 0.429167 0.034413 0.043247 0.559841 0.377315
03a 0.022955 0.027293 0.606349 0.263175 0.029485 0.031024 0.436905 0.471164
04a 0.017067 0.021816 0.389245 0.249457 0.020658 0.018123 0.275728 0.366822
05a 0.029702 0.044304 0.811556 0.118395 0.027830 0.042991 0.877537 0.077069
06a 0.020006 0.073221 0.996160 0.000000 0.020205 0.068212 0.985961 0.002807
07a 0.138625 0.137809 0.525000 0.392222 0.104688 0.116383 0.516667 0.405556
08a 0.025773 0.034817 0.538175 0.336746 0.038654 0.039831 0.495794 0.365913
09a 0.035028 0.036091 0.496890 0.425767 0.026466 0.038417 0.613968 0.272315
10a 0.040129 0.054284 0.716120 0.236064 0.036169 0.045667 0.711205 0.242898
11a 0.024052 0.109806 0.998012 0.000000 0.020052 0.111832 0.997280 0.000000
12a 0.017390 0.221964 1.000000 0.000000 0.015395 0.248510 1.000000 0.000000
13a 0.058361 0.073867 0.621165 0.148909 0.061297 0.091838 0.707024 0.213000
14a 0.041484 0.035127 0.352652 0.526402 0.030463 0.050004 0.732103 0.189431
15a 0.036633 0.028674 0.333018 0.580291 0.021958 0.028285 0.606548 0.295503
16a 0.043449 0.071278 0.816502 0.057209 0.047622 0.063839 0.758392 0.099110
17a 0.022545 0.184460 1.000000 0.000000 0.015152 0.214329 1.000000 0.000000
18a 0.019398 0.343793 1.000000 0.000000 0.015005 0.439499 1.000000 0.000000
la30 0.040453 0.042556 0.362513 0.494643 0.035973 0.046167 0.717460 0.203624
la35 0.016722 0.012202 0.266667 0.627778 0.012918 0.012686 0.405556 0.410000
la40 0.028966 0.042734 0.684101 0.250544 0.016913 0.059628 0.953889 0.020357

For each instance and each metric, the result that is significantly better than other is marked in bold (with smaller IGD, with greater set coverage).

TABLE VIII
COMPARISON BETWEEN THE PROPOSED MEMETIC ALGORITHMS AND

THE EXISTING ALGORITHMS IN THE LITERATURE USING IGD VALUES OF
THE SOLUTIONS FOUND OVER A CERTAIN NUMBER OF INDEPENDENT

RUNS FOR KACEM INSTANCES AND BRDATA INSTANCES.

Instance
IGD

MA-1 MA-2 HSFLA PLS SEA CMA

ka4x5 0.000000 0.000000 – 0.000000 0.000000 0.000000
ka08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ka10x7 0.000000 0.000000 – 0.000000 0.000000 0.000000
ka10x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka15x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Mk01 0.000000 0.000000 0.202123 0.111817 0.010644 0.000000
Mk02 0.000000 0.000000 0.141176 0.060069 0.038961 0.009524
Mk03 0.000000 0.000000 0.222437 0.222437 0.000000 0.000000
Mk04 0.002610 0.002705 0.189767 – 0.012537 0.003653
Mk05 0.000000 0.000000 0.018541 – 0.024490 0.000000
Mk06 0.028061 0.025240 0.114675 – 0.053591 0.022556
Mk07 0.000000 0.000000 0.049865 – 0.015284 0.007078
Mk08 0.000000 0.000000 0.111717 0.111717 0.006982 0.000000
Mk09 0.000908 0.000663 0.118504 – 0.009631 0.001470
Mk10 0.019261 0.015448 0.086488 – 0.079933 0.044289

For each instance, the minimal IGD values obtained by the compared algorithms are marked in bold.

solving the SO-FJSP. A quite interesting note is that MA-
1 (MA-2) even obtains new best known solutions to several
instances. Specifically, MA-1 finds a new best known solution
to the instance 05a, and MA-2 achieves 5 new best known
solutions to the instances 06a, 11a, 12a, 17a and 18a. And for
the instances 06a, 12a, 17a and 18a, the best known solutions
are obviously improved by MA-2. The reason is yet to be
found. It seems that the simultaneous optimization of multiple
objectives in turn promotes the minimization of makespan for
these instances.

From the above computational results and comparisons, it
can be concluded that the proposed MA-1 and MA-2 generally
outperform the existing state-of-the-art approaches for solving
the MO-FJSP. Moreover, they also show the strong ability to
minimize the makespan, and the best known makespan values
for several problem instances are further improved.

VII. FURTHER DISCUSSIONS

In this section, we will give more in-depth explanation
of the algorithm design combining some numerical results
presented in Section VI. From Section VI-E, it can be seen

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 14

TABLE IX
COMPARISON BETWEEN MA-1 AND THE EXISTING ALGORITHMS IN THE LITERATURE USING SET COVERAGE VALUES
OF THE SOLUTIONS FOUND OVER A CERTAIN NUMBER OF INDEPENDENT RUNS FOR KACEM INSTANCES AND BRDATA

INSTANCES.

Instance
MA-1 (A) vs HSFLA (B) MA-1 (A) vs PLS (C) MA-1 (A) vs SEA (D) MA-1 (A) vs CMA (E)

C(A,B) C(B,A) C(A,C) C(C,A) C(A,D) C(D,A) C(A,E) C(E,A)

ka4x5 – – 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ka10x7 – – 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka10x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka15x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Mk01 0.909091 0.000000 1.000000 0.000000 0.272727 0.000000 0.000000 0.000000
Mk02 1.000000 0.000000 0.750000 0.000000 0.142857 0.000000 0.250000 0.000000
Mk03 0.857143 0.000000 0.857143 0.000000 0.000000 0.000000 0.000000 0.000000
Mk04 1.000000 0.000000 – – 0.100000 0.000000 0.043478 0.074074
Mk05 0.428571 0.000000 – – 0.000000 0.000000 0.000000 0.000000
Mk06 1.000000 0.000000 – – 0.669903 0.009434 0.598425 0.179245
Mk07 0.666667 0.000000 – – 0.000000 0.000000 0.250000 0.000000
Mk08 0.625000 0.000000 0.625000 0.000000 0.000000 0.000000 0.000000 0.000000
Mk09 1.000000 0.000000 – – 0.687500 0.000000 0.052632 0.050000
Mk10 0.733333 0.035176 – – 0.934783 0.010050 0.762590 0.120603

For each instance, the greater set coverage values obtained by the compared algorithms are marked in bold.

TABLE X
COMPARISON BETWEEN MA-2 AND THE EXISTING ALGORITHMS IN THE LITERATURE USING SET COVERAGE VALUES
OF THE SOLUTIONS FOUND OVER A CERTAIN NUMBER OF INDEPENDENT RUNS FOR KACEM INSTANCES AND BRDATA

INSTANCES.

Instance
MA-2 (A) vs HSFLA (B) MA-2 (A) vs PLS (C) MA-2 (A) vs SEA (D) MA-2 (A) vs CMA (E)

C(A,B) C(B,A) C(A,C) C(C,A) C(A,D) C(D,A) C(A,E) C(E,A)

ka4x5 – – 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ka10x7 – – 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka10x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ka15x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Mk01 0.909091 0.000000 1.000000 0.000000 0.272727 0.000000 0.000000 0.000000
Mk02 1.000000 0.000000 0.750000 0.000000 0.142857 0.000000 0.250000 0.000000
Mk03 0.857143 0.000000 0.857143 0.000000 0.000000 0.000000 0.000000 0.000000
Mk04 1.000000 0.000000 – – 0.200000 0.000000 0.043478 0.000000
Mk05 0.428571 0.000000 – – 0.000000 0.000000 0.000000 0.000000
Mk06 1.000000 0.000000 – – 0.689320 0.000000 0.677165 0.064220
Mk07 0.666667 0.000000 – – 0.000000 0.000000 0.250000 0.000000
Mk08 0.625000 0.000000 0.625000 0.000000 0.000000 0.000000 0.000000 0.000000
Mk09 1.000000 0.000000 – – 0.703125 0.000000 0.052632 0.016667
Mk10 0.866667 0.005181 – – 0.920290 0.010363 0.830935 0.051813

For each instance, the greater set coverage values obtained by the compared algorithms are marked in bold.

that the proposed MAs can overcome the existing state-of-
the-art algorithms. But why our MAs exhibit such excellent
performance? Here, we would emphasise two special sides.

First, the neighbor generation in local search shows strong
power in simultaneously decreasing the three objectives as
much as possible. To be specific, the neighborhood search is
driven by improving the makespan. We realize this by trying
moving a critical operation in the current schedule one by one
until an acceptable new schedule is obtained. The results in
Table XV can partly indicate that the designed neighborhood
structure is especially effective for minimizing the makespan,
because our MAs are even competitive to the state-of-the-
art algorithms for solving the SO-FJSP. However, it is not
enough by considering only a single objective for the MO-
FJSP. Since the makespan can be optimized by the property
of critical operations, we further consider how to restrain the
increasing of the other two objectives when decreasing the

makespan. Just as described in Section V-B1, the neighbor
of a schedule G is indeed generated by trying the actions
in φ(G). And once an action is executed successfully, the
acceptable neighbor G′ is formed. So, we sort the actions in
φ(G) according to the metrics ∆t and ∆c. Then, the actions
are tried executing one by one according to the sorted order.
The reason for doing this is that we want to make sure
G′ has the smallest possible total workload on the premise
Cmax(G

′) ≤ Cmax(G). We give the least consideration to
the objective critical workload, because only when actions
have the same ∆t values, ∆c is further used to sort them.
Then, why we deal with the three objectives according to this
priority? Because the objective makespan is the hardest to be
optimized among the three concerned objectives, which not
only depends on the machine assignment for each operation
but also depends on the operation sequence on each machine.
Whether the makespan can be effectively minimized directly

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 15

TABLE XI
THE AVERAGE CPU TIME (IN SECONDS) CONSUMED BY
MA-1, MA-2 AND HSFLA ON KACEM INSTANCES AND

BRDATA INSTANCES.

Instance MA-1a MA-2a HSFLAb

ka4x5 5.77 5.03 1.26
ka08 5.39 6.15 –

ka10x7 5.37 5.08 10.14
ka10x10 5.80 6.53 –
ka15x10 8.91 7.46 21.13

Mk01 20.30 20.16 172.18
Mk02 26.99 28.21 229.56
Mk03 56.60 53.76 139.87
Mk04 30.71 30.53 426.12
Mk05 37.50 36.36 153.12
Mk06 81.41 80.61 577.80
Mk07 38.54 37.74 185.23
Mk08 79.40 77.71 165.48
Mk09 74.74 75.23 565.70
Mk10 85.39 90.75 1072.20

a The CPU time on an Intel Core i7-3520M 2.9GHz processor in Java
b The CPU time on a Pentium IV 1.8GHz processor in C++

TABLE XII
COMPARISON BETWEEN THE PROPOSED MEMETIC ALGORITHMS AND
MOGA USING IGD VALUES AND AVERAGE CPU TIME (IN SECONDS)

FOR DPDATA INSTANCES.

Instance
MA-1a MA-2a MOGAb

IGD CPU IGD CPU IGD CPU

01a 0.040359 198.33 0.035874 185.72 0.224215 122.50
02a 0.004321 155.34 0.016988 166.01 0.101119 153.40
03a 0.007921 150.80 0.013462 157.96 0.207378 174.00
04a 0.006372 121.34 0.011408 87.25 0.308259 124.20
05a 0.014391 121.04 0.014910 117.03 0.536145 142.40
06a 0.012423 138.70 0.013342 135.07 0.808465 185.60
07a 0.022060 200.52 0.039878 215.18 0.259504 457.80
08a 0.003637 122.56 0.010671 164.33 0.186362 496.00
09a 0.013067 106.50 0.002006 153.70 0.197739 609.60
10a 0.023802 188.23 0.017439 180.87 0.226811 452.80
11a 0.014375 176.87 0.010544 163.37 0.697549 608.20
12a 0.009872 192.45 0.007111 165.14 0.895897 715.40
13a 0.026774 195.87 0.026426 196.45 0.304963 1439.40
14a 0.024124 122.11 0.009541 153.67 0.352456 1743.20
15a 0.016359 123.93 0.004840 148.75 0.173609 1997.10
16a 0.026806 185.04 0.023212 194.71 0.394364 1291.40
17a 0.011310 184.15 0.005050 203.10 0.735482 1708.00
18a 0.008480 175.72 0.006298 191.23 0.922706 1980.40

a
The CPU time on an Intel Core i7-3520M 2.9GHz processor in Java

b The CPU time on a 2GHz processor in C++
For each instance, the minimal IGD values obtained by the compared algorithms are marked in bold.

influences the final algorithm performance. Moreover, it has
been observed that the makespan and critical workload are
approximately positively correlated on most of instances [30],
so it may imply that minimizing the makespan is helpful to
minimize the critical workload. This explains why we consider
the total workload following the makespan. Our design enables
that the makespan of schedules produced in the local search
path is non-increasing, while the increasing of the other two
objectives is suitably controlled, which makes a good comprise
between the three objectives. In Section VI-C, the statistics
show that MA-1 (MA-2) significantly outperforms the adapted
NSGA-II, which verifies the effectiveness of the proposed
local search. Further, in Section VI-D, we computationally
show that considering three objectives hierarchically in the

TABLE XIII
SOLUTIONS FOUND OVER 30 INDEPENDENT RUNS BY MA-1, MA-2

AND MOEA-GLS FOR 3 HURINK VDATA INSTANCES.

Instance
MA-1 MA-2 MOEA-GLS

Cmax WT Wmax Cmax WT Wmax Cmax WT Wmax

la30 1076 10680 1075 1072 10680 1072 1075 10680 1075
1078 10680 1074 1073 10680 1071 1077 10680 1073
1079 10680 1073 1082 10680 1070 1079 10680 1072
1080 10680 1072 1135 10680 1069
1086 10680 1071
1097 10680 1070

la35 1550 15485 1550 1550 15485 1550 1550 15485 1550

la40 955 11472 772 955 11472 769 955 11472 783
956 11472 771 956 11472 768 957 11472 780
959 11472 770 963 11472 779
967 11472 769 964 11472 777

966 11472 775

For each instance, the solution that is not dominated by any other solution is marked in bold.

TABLE XIV
THE AVERAGE CPU TIME (IN SECONDS) CONSUMED BY MA-1,

MA-2 AND MOEA-GLS ON 3 HURINK VDATA INSTANCES.

Instance MA-1a MA-2a MOEA-GLSb

la30 47.95 53.43 2110.80
la35 67.29 83.03 355.20
la40 62.13 55.81 928.80

a The CPU time on an Intel Core i7-3520M 2.9GHz processor in Java
b The CPU time on a 2GHz processor in C++

neighbor generation is better than just considering makespan.
Second, we would discuss the selection of the individuals

from the population for local search. In order to reduce
the computational effort for our MAs, we only apply local
search to good individuals in the offspring population. And
in each generation, only a predefined number of individuals
are selected for local search, which is helpful to keep the
diversity of the population. More specifically, the probability
Pls is defined to decide how many individuals are chosen.
For choosing an individual, we use the tournament selection
based on (5), where the weight vector is randomly drawn
from a weight vector set. The ideas behind this design can be
explained from the following two points of the view. One is to
choose a good individual for a randomly specified local search
direction instead of specifying a good local search direction to
each individual [31]. The other is that we randomly choose the
weight vector each time in order to promote the individuals
close to the Pareto front in different directions by local search,
which serves well the goals of convergence and diversity in
the multiobjective optimization [56].

In summary, we implement a strong local search engine
based on the neighbor generation procedure, and it is appro-
priately used to improve a portion of good individuals from
the offspring population generated by genetic operators. The
real effect is that the global-based genetic search provides
good initial individuals for local search, and the improved
individuals obtained by local search are well injected into the
new population via non-dominated sorting and crowding dis-
tance, pulling the population permanently towards the Pareto

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 16

TABLE XV
COMPARISON OF THE BEST MAKESPAN OBTAINED ON

ALL 36 PROBLEM INSTANCES.

Instance BKS MA-1 MA-2 TS CDDS

ka4x5 11 11 11 – –
ka08 14 14 14 – –

ka10x7 11 11 11 – –
ka10x10 7 7 – –
ka15x1 11 11 11 – –
Mk01 40 40 40 40 40
Mk02 26 26 26 26 26
Mk03 204 204 204 204 204
Mk04 60 60 60 60 60
Mk05 172 172 172 173 173
Mk06 58 60 59 58 58
Mk07 139 139 139 144 139
Mk08 523 523 523 523 523
Mk09 307 307 307 307 307
Mk10 197 205 202 198 197
01a 2505 2520 2521 2518 2518
02a 2230 2236 2244 2231 2231
03a 2228 2231 2234 2229 2229
04a 2503 2510 2513 2503 2503
05a 2212 2208 2211 2216 2216
06a 2187 2173 2172 2203 2196
07a 2283 2371 2365 2283 2283
08a 2067 2083 2087 2069 2069
09a 2066 2081 2075 2066 2066
10a 2291 2340 2327 2291 2291
11a 2061 2067 2057 2063 2063
12a 2027 1998 1992 2034 2031
13a 2257 2306 2311 2260 2257
14a 2167 2192 2187 2167 2167
15a 2165 2186 2180 2167 2165
16a 2255 2292 2293 2255 2256
17a 2140 2129 2119 2141 2140
18a 2127 2086 2077 2137 2127
la30 1069 1076 1072 1069 –
la35 1549 1550 1550 1549 –
la40 955 955 955 955 –

For each instance, the minimal makespan values obtained by the compared algorithms
are marked in bold.

front. This effect is computationally proved in Section VI-C,
where the results indicate that the hybridization of genetic
search and local search is significantly better than its individual
component. It’s worth noting that the two sides discussed
above both concern the local search. But it doesn’t mean that
the genetic search is indifferent to our MAs. In fact, from the
results shown in Section VI-C, MA-1 (MA-2) performs much
better than MRLS-1 (MRLS-2), which demonstrates that the
genetic search also plays a key role in the proposed MAs.
However, just in the sense of algorithm design, it is not so
delicate as well as local search.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study the multiobjective flexible job
shop scheduling problem (MO-FJSP) with the makespan, total
workload, and critical workload criteria, which has a strong
industrial background and is very close to the real manu-
facturing situation. To propose effective memetic algorithms
(MAs), we first adapt the classical NSGA-II to the MO-
FJSP through well-designed chromosome encoding/decoding
scheme and genetic operators. Then, a novel local search
based on critical operations is specially developed for the

MO-FJSP. It is worth noting that a hierarchical strategy is
adopted in local search to enhance the ability to deal with
multiple objectives. This strategy considers the minimization
of makespan with the highest priority, while the total workload
and critical workload are concerned subsequently by ordering
all the possible actions that could generate the acceptable
neighbor. Afterwards, the local search is embedded into the
adapted NSGA-II to stress intensification, and the proposed
MAs are formed. The two alternative acceptance rules in local
search have a little influence on the performance of MAs, but
the “Pareto” acceptance rule is preferred on the whole. To
show how our MAs work, the effectiveness of key components
in our MAs is also verified, including genetic search, local
search, and the hierarchical strategy in local search. Moreover,
extensive comparisons are carried out for the proposed MAs
against the existing state-of-the-art algorithms on each data
set. According to the computational results, the proposed
MAs outperform all the other algorithms by a considerable
margin. The success of our MA shows the effectiveness
of combing traditional multiobjective evolutionary techniques
with problem-specific search algorithms.

In the future, we will continue this study in the following
directions. First, we would introduce a learning mechanism
to dynamically adjust the local search probability at each
generation in order to further improve the performance of our
MAs. Second, we want to focuss on further exploring the
problem-specific characteristics, and develop more effective
local search for the MO-FJSP. Third, it could be interesting
to adapt the proposed MAs to the other production scheduling
models with multiple objectives [57]–[59].

ACKNOWLEDGMENT

The authors would like to thank the editors and reviewers
for their valuable comments and suggestions. This work was
supported by National Natural Science Foundation of China
(Grant No. 61175110), National S&T Major Projects of China
(Grant No. 2011ZX02101-004) and National Basic Research
Program of China (973 Program) (Grant No. 2012CB316305).

REFERENCES

[1] M. Garey, D. Johnson, and R. Sethi, “The complexity of flowshop and
jobshop scheduling,” Mathematics of operations research, vol. 1, no. 2,
pp. 117–129, 1976.

[2] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu
search,” Annals of Operations Research, vol. 41, no. 3, pp. 157–183,
1993.

[3] M. Mastrolilli and L. Gambardella, “Effective neighbourhood functions
for the flexible job shop problem,” Journal of Scheduling, vol. 3, no. 1,
pp. 3–20, 2000.

[4] N. Ho, J. Tay, and E. Lai, “An effective architecture for learning and
evolving flexible job-shop schedules,” European Journal of Operational
Research, vol. 179, no. 2, pp. 316–333, 2007.

[5] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for
the flexible job-shop scheduling problem,” Computers & Operations
Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[6] W. Bożejko, M. Uchroński, and M. Wodecki, “Parallel hybrid meta-
heuristics for the flexible job shop problem,” Computers & Industrial
Engineering, vol. 59, no. 2, pp. 323–333, 2010.

[7] A. Ben Hmida, M. Haouari, M.-J. Huguet, and P. Lopez, “Discrepancy
search for the flexible job shop scheduling problem,” Computers &
Operations Research, vol. 37, no. 12, pp. 2192–2201, 2010.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 17

[8] Y. Yuan, H. Xu, and J. Yang, “A hybrid harmony search algorithm for the
flexible job shop scheduling problem,” Applied Soft Computing, vol. 13,
no. 7, pp. 3259–3272, 2013.

[9] Y. Yuan and H. Xu, “An integrated search heuristic for large-scale flexi-
ble job shop scheduling problems,” Computers & Operations Research,
vol. 40, no. 12, pp. 2864–2877, 2013.

[10] W. Xia and Z. Wu, “An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems,” Computers &
Industrial Engineering, vol. 48, no. 2, pp. 409–425, 2005.

[11] H. Liu, A. Abraham, O. Choi, and S. Moon, “Variable neighborhood par-
ticle swarm optimization for multi-objective flexible job-shop scheduling
problems,” Simulated Evolution and Learning, pp. 197–204, 2006.

[12] J. Gao, M. Gen, L. Sun, and X. Zhao, “A hybrid of genetic algorithm
and bottleneck shifting for multiobjective flexible job shop scheduling
problems,” Computers & Industrial Engineering, vol. 53, no. 1, pp. 149–
162, 2007.

[13] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle
swarm optimization algorithm for multi-objective flexible job-shop
scheduling problem,” Computers & Industrial Engineering, vol. 56,
no. 4, pp. 1309–1318, 2009.

[14] L. Xing, Y. Chen, and K. Yang, “An efficient search method for multi-
objective flexible job shop scheduling problems,” Journal of Intelligent
Manufacturing, vol. 20, no. 3, pp. 283–293, 2009.

[15] J. Li, Q. Pan, and Y. Liang, “An effective hybrid tabu search algorithm
for multi-objective flexible job-shop scheduling problems,” Computers
& Industrial Engineering, vol. 59, no. 4, pp. 647–662, 2010.

[16] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic,” Mathematics and computers in simulation,
vol. 60, no. 3, pp. 245–276, 2002.

[17] N. Ho and J. Tay, “Solving multiple-objective flexible job shop problems
by evolution and local search,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 38, no. 5, pp. 674–
685, 2008.

[18] M. Frutos, A. Olivera, and F. Tohmé, “A memetic algorithm based on
a nsgaii scheme for the flexible job-shop scheduling problem,” Annals
of Operations Research, vol. 181, no. 1, pp. 745–765, 2010.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] X. Wang, L. Gao, C. Zhang, and X. Shao, “A multi-objective genetic
algorithm based on immune and entropy principle for flexible job-shop
scheduling problem,” International Journal of Advanced Manufacturing
Technology, vol. 51, no. 5, pp. 757–767, 2010.

[21] G. Moslehi and M. Mahnam, “A pareto approach to multi-objective
flexible job-shop scheduling problem using particle swarm optimization
and local search,” International Journal of Production Economics, vol.
129, no. 1, pp. 14–22, 2011.

[22] J. Li, Q. Pan, and K. Gao, “Pareto-based discrete artificial bee colony
algorithm for multi-objective flexible job shop scheduling problems,”
International Journal of Advanced Manufacturing Technology, vol. 55,
no. 9, pp. 1159–1169, 2011.

[23] J. Li, Q. Pan, and S. Xie, “An effective shuffled frog-leaping algorithm
for multi-objective flexible job shop scheduling problems,” Applied
Mathematics and Computation, vol. 218, no. 18, pp. 9353–9371, 2012.

[24] J. Li, Q. Pan, and J. Chen, “A hybrid pareto-based local search algorithm
for multi-objective flexible job shop scheduling problems,” International
Journal of Production Research, vol. 50, no. 4, pp. 1063–1078, 2012.

[25] L. Wang, G. Zhou, Y. Xu, and M. Liu, “An enhanced pareto-based
artificial bee colony algorithm for the multi-objective flexible job-
shop scheduling,” International Journal of Advanced Manufacturing
Technology, vol. 60, no. 9, pp. 1111–1123, 2012.

[26] S. Rahmati, M. Zandieh, and M. Yazdani, “Developing two multi-
objective evolutionary algorithms for the multi-objective flexible job
shop scheduling problem,” International Journal of Advanced Manu-
facturing Technology, In press.

[27] M. Rabiee, M. Zandieh, and P. Ramezani, “Bi-objective partial flexible
job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES
approaches,” International Journal of Production Research, vol. 50,
no. 24, pp. 7327–7342, 2012.

[28] J. Xiong, X. Tan, K. Yang, L. Xing, and Y. Chen, “A hybrid multiobjec-
tive evolutionary approach for flexible job-shop scheduling problems,”
Mathematical Problems in Engineering, vol. 2012, 2012.

[29] T. Chiang and H. Lin, “A simple and effective evolutionary algorithm
for multiobjective flexible job shop scheduling,” International Journal
of Production Economics, vol. 141, no. 1, pp. 87–98, 2013.

[30] T. Chiang and H. Lin, “Flexible job shop scheduling using a multiobjec-
tive memetic algorithm,” Advanced Intelligent Computing Theories and
Applications. With Aspects of Artificial Intelligence, pp. 49–56, 2012.

[31] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genet-
ic search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[32] G. Minella, R. Ruiz, and M. Ciavotta, “A review and evaluation of mul-
tiobjective algorithms for the flowshop scheduling problem,” INFORMS
Journal on Computing, vol. 20, no. 3, pp. 451–471, 2008.

[33] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[34] L. Ke, Q. Zhang, and R. Battiti, “MOEA/D-ACO: A multiobjective
evolutionary algorithm using decomposition and ant colony,” IEEE
Transactions on Cybernetics, in press.

[35] B. Roy and B. Sussmann, “Les problemes dordonnancement avec
contraintes disjonctives,” Note ds, vol. 9, 1964.

[36] M. Pinedo, Scheduling: theory, algorithms, and systems. Springer
Science+ Business Media, 2012.

[37] N. Krasnogor and J. Smith, “A tutorial for competent memetic algo-
rithms: model, taxonomy, and design issues,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474–488, 2005.

[38] Y. Ong and A. Keane, “Meta-lamarckian learning in memetic algorithm-
s,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp.
99–110, 2004.

[39] Y. Ong, M. Lim, N. Zhu, and K. Wong, “Classification of adaptive
memetic algorithms: a comparative study,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 1, pp.
141–152, 2006.

[40] H. Ishibuchi and K. Narukawa, “Some issues on the implementation of
local search in evolutionary multiobjective optimization,” in Genetic and
Evolutionary Computation–GECCO 2004. Springer, 2004, pp. 1246–
1258.

[41] H. Ishibuchi and T. Murata, “A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 28, no. 3, pp. 392–403, 1998.

[42] K. Sindhya, K. Deb, and K. Miettinen, “Improving convergence of evo-
lutionary multi-objective optimization with local search: a concurrent-
hybrid algorithm,” Natural Computing, vol. 10, no. 4, pp. 1407–1430,
2011.

[43] H. Ishibuchi, Y. Hitotsuyanagi, and Y. Nojima, “An empirical study
on the specification of the local search application probability in
multiobjective memetic algorithms,” in IEEE Congress on Evolutionary
Computation, 2007. CEC 2007.. IEEE, 2007, pp. 2788–2795.

[44] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, “Use of
heuristic local search for single-objective optimization in multiobjective
memetic algorithms,” Parallel Problem Solving from Nature–PPSN X,
pp. 743–752, 2008.

[45] D. Garrett and D. Dasgupta, “An empirical comparison of memetic al-
gorithm strategies on the multiobjective quadratic assignment problem,”
in Computational intelligence in miulti-criteria decision-making, 2009.
mcdm’09. ieee symposium on. IEEE, 2009, pp. 80–87.

[46] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-
shop scheduling problems using genetic algorithmsłi. representation,”
Computers & Industrial Engineering, vol. 30, no. 4, pp. 983–997, 1996.

[47] I. Oliver, D. Smith, and J. Holland, “A study of permutation crossover
operators on the traveling salesman problem,” in Proceedings of the
Second International Conference on Genetic Algorithms on Genetic
algorithms and their application. L. Erlbaum Associates Inc., 1987,
pp. 224–230.

[48] S. Dauzère-Pérès and J. Paulli, “An integrated approach for modeling
and solving the general multiprocessor job-shop scheduling problem
using tabu search,” Annals of Operations Research, vol. 70, no. 0, pp.
281–306, Apr. 1997.

[49] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-
shop scheduling problem with multi-purpose machines,” OR Spectrum,
vol. 15, no. 4, pp. 205–215, 1994.

[50] C. Coello and N. Cortés, “Solving multiobjective optimization problems
using an artificial immune system,” Genetic Programming and Evolvable
Machines, vol. 6, no. 2, pp. 163–190, 2005.

[51] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary computation,
vol. 8, no. 2, pp. 173–195, 2000.

[52] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 18

[53] J. C. Beck, T. Feng, and J.-P. Watson, “Combining constraint program-
ming and local search for job-shop scheduling,” INFORMS Journal on
Computing, vol. 23, no. 1, pp. 1–14, 2011.

[54] D. Sha and C.-Y. Hsu, “A hybrid particle swarm optimization for job
shop scheduling problem,” Computers & Industrial Engineering, vol. 51,
no. 4, pp. 791–808, 2006.

[55] C. Y. Zhang, P. Li, Y. Rao, and Z. Guan, “A very fast TS/SA algo-
rithm for the job shop scheduling problem,” Computers & Operations
Research, vol. 35, no. 1, pp. 282–294, 2008.

[56] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, pp. 263–282, 2002.

[57] B. Qian, L. Wang, D.-x. Huang, W.-l. Wang, and X. Wang, “An effective
hybrid de-based algorithm for multi-objective flow shop scheduling with
limited buffers,” Computers & Operations research, vol. 36, no. 1, pp.
209–233, 2009.

[58] R. Qing-Dao-Er-Ji, Y. Wang, and X. Wang, “Inventory based two-
objective job shop scheduling model and its hybrid genetic algorithm,”
Applied Soft Computing, vol. 13, no. 3, pp. 1400–1406, 2013.

[59] B. Alidaee and H. Li, “Parallel machine selection and job scheduling to
minimize sum of machine holding cost, total machine time costs, and
total tardiness costs,” IEEE Transactions on Automation Science and
Engineering, in press.

Yuan Yuan received his B.S. degree in software en-
gineering from Southeast University, Nanjing, Chi-
na, in 2010. He is currently pursuing the Ph.D.
degree in the Department of Computer Science and
Technology, Tsinghua University, Beijing, China.

His current research interests mainly include the
evolutionary multiobjective optimization, intelligent
scheduling and statistical machine learning tech-
niques.

Hua Xu received his B.S. from Xi’an Jiaotong
University in 1998. He received his M.S. and Ph.D.
degrees from Tsinghua University in 2000 and 2003,
respectively. Now he is an associate professor in the
Department of Computer Science and Technology,
Tsinghua University.

His research fields include the following aspects:
Data Mining, Intelligent Information Processing and
Advanced Process Controllers for IC manufacturing
equipments. He has published over 50 academic
papers, received 10 invention patents of advanced

controller and is also the copyright owner of 6 software systems. He has
achieved the 2nd Prize of National Science and Technology Progress of
China, the 1st Prize of Beijing Science and Technology and the 3rd Prize
of Chongqing Science and Technology.

