
Computers & Operations Research 40 (2013) 2864–2877
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05
http://d

n Corr
E-m
journal homepage: www.elsevier.com/locate/caor
An integrated search heuristic for large-scale flexible job shop
scheduling problems

Yuan Yuan, Hua Xu n

State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, PR China
a r t i c l e i n f o

Available online 4 July 2013

Keywords:
Scheduling
Flexible job shop
Harmony search
Large neighborhood search
Makespan
48/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cor.2013.06.010

esponding author.
ail address: xuhua@tsinghua.edu.cn (H. Xu).
a b s t r a c t

The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling
problem (JSP), where each operation is allowed to be processed by any machine from a given set, rather
than one specified machine. In this paper, two algorithm modules, namely hybrid harmony search (HHS)
and large neighborhood search (LNS), are developed for the FJSP with makespan criterion. The HHS is an
evolutionary-based algorithm with the memetic paradigm, while the LNS is typical of constraint-based
approaches. To form a stronger search mechanism, an integrated search heuristic, denoted as HHS/LNS, is
proposed for the FJSP based on the two algorithms, which starts with the HHS, and then the solution is
further improved by the LNS. Computational simulations and comparisons demonstrate that the
proposed HHS/LNS shows competitive performance with state-of-the-art algorithms on large-scale FJSP
problems, and some new upper bounds among the unsolved benchmark instances have even been found.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The classical job shop scheduling problem (JSP) is one of the
most important and difficult problems in the field of production
scheduling and has received an enormous amount of attention in
the research literature [1–6]. The flexible job shop scheduling
problem (FJSP) is a generalization of the classical JSP, where each
operation is allowed to be processed by any machine from a given
set, rather than one specified machine. Compared with the
classical JSP, the FJSP is closer to a real production environment
and has more practical applicability. However, it is more compli-
cated than the classical JSP, because of its additional decision to
assign each operation to the appropriate machine. It has been
proved that the FJSP is strongly NP-hard even if each job has at
most three operations and there are two machines [7].

Due to the computational complexity of the FJSP, exact algo-
rithms are not effective, especially for instances on a large scale.
So, meta-heuristics have become the main-stream of research for
this problem over the past decade. In the initial study on this
subject, tabu search (TS) was applied most successfully to the FJSP
[8–11]. The TS proposed by Mastrolilli and Gambardella [11] still
represents the state-of-the-art until now. One of the latest
important work based on TS can be found in [12], in which a
parallel double-level TS was proposed for the FJSP and could
ll rights reserved.
obtain new best known solutions for the benchmark instances
from the literature. However, in recent years, two categories of
techniques have been more emphasized to address the FJSP, which
are evolutionary-based and constraint-based approaches.

Evolutionary-based approaches attempt to solve the FJSP by
using evolutionary algorithms. The basic mechanism for this type
of approaches is to encode the scheduling solutions to some form
of codes, then the corresponding decoding algorithm is carried out
to evaluate the codes during the optimization process. Thus far,
many evolutionary meta-heuristics have been studied for the FJSP,
such as genetic algorithm (GA) [13,14], artificial immune algorithm
(AIA) [15], ant colony optimization (ACO) [16], and artificial bee
colony (ABC) algorithm [17]. Among these existing works, the
memetic paradigm [18], which introduces the problem-dependent
local search into the evolutionary algorithm, seems to be more
promising to produce high quality solutions for the FJSP [14,17].

Constraint-based approaches are mainly built on a foundation of
constraint programming (CP) techniques. Thus, to apply CP to the
FJSP is natural because the FJSP is a constraint optimization problem
in essence. However, the pure CP is only effective for some small size
instances of the FJSP due to the exponentially growing search space.
Several important advancements in CP, such as discrepancy search
(DS) [19], large neighborhood search (LNS) [20] and iterative flatten-
ing search (IFS) [21], changed this situation. Most recently, these
techniques have been well tested on the FJSP and achieved the
excellent performance on some standard benchmarks [22–24].

Since both of the two categories of techniques have been
applied successfully in the FJSP, therefore, the integration of them

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.06.010
http://dx.doi.org/10.1016/j.cor.2013.06.010
http://dx.doi.org/10.1016/j.cor.2013.06.010
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.010&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.010&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.010&domain=pdf
mailto:xuhua@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.cor.2013.06.010
http://dx.doi.org/10.1016/j.cor.2013.06.010


Table 1
Processing time table of an instance of FJSP.

Job Operation M1 M2 M3

J1 O1;1 2 – 3
O1;2 4 1 3

J2 O2;1 – 2 3
O2;2 6 2 4
O2;3 3 – –

J3 O3;1 1 5 2
O3;2 3 – 2

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2865
to form a stronger search mechanism appears to be promising. In
this paper, two algorithm modules for the FJSP with makespan
criterion are developed: hybrid harmony search (HHS) and large
neighborhood search (LNS), representing the evolutionary-based
and constraint-based approaches, respectively. The HHS algorithm
is designed with memetic paradigm, which explores the search
space using harmony search (HS) [25], whereas a local search
procedure based on the critical path is embedded in the HS to
perform the exploitation. The LNS algorithm is devised to improve
the current solution continuously by focusing on re-optimizing its
subpart employing the CP-based search. Based on the two algo-
rithms, an integrated search heuristic, namely HHS/LNS, is pro-
posed for solving large-scale FJSP problems.

The integration of the HHS and LNS in this paper is motivated
by the following aspects: the HHS algorithm could generate high
quality solutions quickly; however, when the evolution procedure
reaches a certain level, the solution is hard to improve further by
tuning several important algorithm parameters; and the LNS has a
strong ability to intensify during search, but the ability degrades
along with the increase of problem space. Another defect of LNS is
that it depends on the initial solution for dealing with some large-
scale instances, and the inferior initial solution may lead to a large
amount of computation time and poor quality results.

The remainder of this paper is organized as follows. Section 2
formulates the studied problem. Sections 3 and 4 introduce the
HHS module and the LNS module, respectively. How to integrate
the two modules into a framework is described in Section 5.
Afterwards, experimental studies are presented in Section 6.
Finally, the paper is summarized in Section 7.
2. Problem formulation

The FJSP is formally formulated as follows. There are a set of n
independent jobs J ¼ fJ1; J2;…; Jng and a set of m machines
M¼ fM1;M2;…;Mmg. Each job Ji consists of a sequence of pre-
cedence constrained operations Oi;1, Oi;2, …, Oi;ni

. The job Ji is
completed only when all its operations are executed in a given
order, which can be represented as Oi;1-Oi;2-⋯-Oi;ni . Each
operation Oi,j, i.e. the jth operation of job Ji, can be executed on
any machine selected among a given subset Mi;jDM. The proces-
sing time of each operation is machine dependent. We denote pi;j;k
to be the processing time of Oi,j on machine Mk. The scheduling
consists of two subproblems: the routing subproblem that assigns
each operation to an appropriate machine and the sequencing
subproblem that determines a sequence of operations on all the
machines. The objective is to find a schedule which minimizes the
makespan. The makespan means the time needed to complete all
the jobs and can be defined as Cmax ¼max1≤i≤uðCiÞ, where Ci is the
completion time of job Ji.

Moreover, the following assumptions are made in this paper:
all the machines are available at time 0; all the jobs are released at
time 0; each machine can process only one operation at a time;
each operation must be completed without interruption once it
starts; the order of operations for each job is predefined and
cannot be modified; the setting up time of machines and transfer
time of operations are negligible.

For illustrating explicitly, a sample instance of FJSP is shown in
Table 1, where rows correspond to operations and columns
correspond to machines. Each entry of the input table denotes
the processing time of that operation on the corresponding
machine. In this table, the tag “–” means that a machine cannot
execute the corresponding operation.

Finally, we summarize some notations used mostly throughout
this paper in Table 2.
3. Hybrid harmony search

3.1. Outline of HS

The harmony search (HS) [25] is one of the latest population-
based evolutionary meta-heuristics. It is originally designed for
the continuous optimization problem, which is defined as mini-
mize (or maximize) f(X) such that xðjÞ∈½xminðjÞ; xmaxðjÞ�, where f(X) is
the objective function, X ¼ fxð1Þ; xð2Þ;…; xðDÞg is a candidate
solution consisting of D decision variables, and xminðjÞ and xmaxðjÞ
are the lower and upper bounds for each decision variable,
respectively. To solve the problem, the HS maintains a harmony
memory (HM) which consists of harmony vectors and can be
represented as HM¼ fX1;X2;…;XHMSg, where HMS denotes the
harmony memory size (HMS), and Xi ¼ fxið1Þ; xið2Þ;…; xiðDÞg is the
ith harmony vector in the HM. The best and worst harmony
vectors in the HM are separately labeled as Xbest and Xworst,
respectively. The workflow of HS is simply described as follows.
First, the initial harmony memory is generated from a uniform
distribution in the ranges ½xminðjÞ; xmaxðjÞ�, where 1≤j≤D.
Then, a new candidate harmony is generated from the HM based
on three rules: memory consideration, pitch adjustment and
random selection. In this paper, the modified pitch adjustment
rule [26] is adopted, which can well inherit a good solution
structure of Xbest and make the algorithm have fewer parameters.
The pseudocode of generating a new candidate harmony, the so-
called “improvisation” in the HS, is depicted in Algorithm 1,
where HMCR is the harmony memory considering rate (HMCR),
PAR is the pitch adjusting rate (PAR), and randð0;1Þ is a random
function returning a real number between 0 and 1with uniform
distribution. Following the improvisation, the HM is updated by
replacing the worst harmony in the HM with the newly
generated harmony, but only if its fitness (measured in terms of
the objective function) is better than that of the worst harmony.
The procedures of improvising and updating are repeated until the
termination criterion is satisfied. For more details about HS, refer
to [25,27].

Algorithm 1. Pseudocode of the improvisation.
1:
 for each j∈½1;D� do

2:
 if randð0;1ÞoHMCR then
 ▹ memory

consideration

3:
 xnewðjÞ←xiðjÞ, where

i∈f1;2;…;HMSg;

4:
 if randð0;1ÞoPAR then
 ▹ pitch adjustment

5:
 xnewðjÞ←xbestðjÞ;

6:
 end if

7:
 else
 ▹ random selection

8:
 xnewðjÞ←xnewðjÞ∈½xminðjÞ; xmaxðjÞ�;

9:
 end if

10:
 end for



ations Research 40 (2013) 2864–2877
3.2. Procedure of HHS

The procedure of the proposed HHS algorithm is based on the
HS and its algorithmic flow is depicted in Algorithm 2. Unlike the
basic HS, a local search procedure is performed to improve the
harmony vector generated in the improvisation phase for stressing
exploitation, then the improved harmony vector enters into the
evolutionary process to replace the original one. In addition, our
HHS adopts the total number of improvisations (NI) as the
stopping criterion. In other words, the HHS will be terminated
when the NI is reached.

Algorithm 2. Algorithmic flow of the proposed HHS algorithm.

Y. Yuan, H. Xu / Computers & Oper2866
Table
Summ

Not

J
M
n
m
Ji
ni
Mk

Oi,j

Mi;j

pi;j;k
Cma

d
l(j)
si;j
μi;j
G
Xi

xi(j)
xmin

xma

D
Xi;1

Xi;2

Xbes

Xwo

Xnew

X′ne
δ

Ri
ri(j)
Si
si(j)
Ω

ϒ

1:
 Set the algorithm parameters and the stopping criterion.

2:
 Initialize the HM.

3:
 Evaluate each harmony vector in the HM and label the Xbest

and Xworst.

4:
 while the stopping criterion is not met do

5:
 Improvise a new harmony vector Xnew from the HM.

6:
 Perform the local search to Xnew and yield X′new.

7:
 Update the HM.

8:
 end while

9:
 return the best harmony vector found.
2
ary of notations.

ation Description

The set of all jobs
The set of all machines
The total number of jobs
The total number of machines
The ith job
The number of operations of job Ji
The kth machine
The jth operation of job Ji
The set of alternative machines of operation Oi,j

The processing time of Oi,j on machine Mk

x The time needed to complete all jobs
The total number of all operations
The number of alternative machines of operation j
The start time of operation Oi,j in the schedule
The selected machine of operation Oi,j in the schedule
The schedule represented by the disjunctive graph
The ith harmony vector in the harmony memory
The jth decision variable of harmony vector Xi

ðjÞ The lower bound for the decision variable xi(j)
xðjÞ The upper bound for the decision variable xi(j)

The dimension of harmony vector
The first half part of harmony vector Xi

The second half part of harmony vector Xi

t The best harmony vector in the harmony memory
rst The worst harmony vector in the harmony memory

The new harmony vector obtained through improvisation in harmony
search

w The harmony vector obtained after local search
The bound factor
The machine assignment vector
The jth decision variable of machine assignment vector Ri
The operation sequence vector
The jth decision variable of operation sequence vector Si
The set of operations chosen to relax in large neighborhood search
The subset of Ω in which each operation is fixed on the original

machine

Forward
conversionHarmony Vector Two-vec

Code

Fig. 1. The computational fl
3.3. Adaptation of HHS to the FJSP

As can be seen from Algorithm 2, there exist four issues to
adapt the proposed HHS to the FJSP: representation of a harmony
vector, initialization of the HM, evaluation of a harmony vector,
and how to apply the local search to a harmony vector.

The HS algorithm works on the continuous domain, so the
representation of a harmony vector (see Section 3.3.1) in the HHS
is described in terms of continuous values to make more efficient
use of the searching mechanism of HS. The HM is just initialized
randomly and uniformly (see Section 3.3.1) to maintain the
diversity.

To evaluate a harmony vector, we should map it to a schedule
of the FJSP, then its fitness is given the value of makespan for this
schedule. However, the kind of mapping is not straightforward,
due to the continuity of the harmony vector and the discreteness
of the schedule. Thus, a kind of discrete two vector code (see
Section 3.3.2) is adopted as the bridge. When evaluating a
harmony vector, it is firstly converted to a two vector code, called
forward conversion (see Section 3.3.3) in this paper, then the two-
vector code is further decoded to an active schedule, just as
depicted in Fig. 1.

As for the local search to a harmony vector, its computational
flow is depicted in Fig. 2. Indeed, the local search is not directly
applied to a harmony vector, but to the schedule corresponding to
the harmony vector, which is helpful for introducing the problem-
specific knowledge. As shown in Fig. 2, when performing the local
search to a harmony vector, the operator of evaluation is firstly
used to obtain the corresponding schedule, then the schedule is
further improved by the local search (see Section 3.3.4). After-
wards, the improved schedule is encoded to a two vector code,
which is finally converted to a harmony vector (improved har-
mony vector) by using backward conversion (see Section 3.3.3).

In the following, we will detail the adaptation of the proposed
HHS to the FJSP. Section 3.3.1 introduces the representation of a
harmony vector and initialization of the HM. In Section 3.3.2, the
two-vector is illustrated including its encoding and decoding
methods. In Section 3.3.3, the conversion techniques, forward
conversion and backward conversion, are presented. The local
search strategy is described in Section 3.3.4.
3.3.1. Representation and initialization
In the proposed HHS, a harmony vector, Xi ¼ fxið1Þ; xið2Þ;

…; xiðDÞg, is represented as a D-dimensional real vector. The
dimension D satisfies the constraint D¼ 2d, where d is the total
number of all operations in the FJSP to solve. The first half of the
harmony vector Xi;1 ¼ fxið1Þ; xið2Þ;…; xiðdÞg describes the informa-
tion of machine assignment for each operation, while the last half
of the harmony vector Xi;2 ¼ fxiðdþ 1Þ; xiðdþ 2Þ;…; xið2dÞg presents
the information of operations sequencing on all the machines. This
design can correspond well to the two-vector code for the FJSP.
Moreover, to deal with the problem conveniently, the intervals
½xminðjÞ; xmaxðjÞ�, j¼ 1;2;…;D, are all set as ½�δ; δ�, δ40, where δ is
referred to as the bound factor in this paper.

The population is initialized randomly and uniformly. A harmony
vector, Xi ¼ fxið1Þ; xið2Þ;…; xiðDÞg, is randomly produced according
to the following formula:

xiðjÞ ¼�δþ 2δ� randð0;1Þ; j¼ 1;2;…;D ð1Þ
tor ScheduleDecoding

ow of the evaluation.



Forward
conversionHarmony Vector Two-vector

Code ScheduleDecoding

Backward
conversion

Improved
Harmony Vector

Two-vector
Code

Improved
Schedule

Encoding

Apply the local search

Evaluation Phase

Fig. 2. The computational flow of the local search to a harmony vector.

Table 3
Illustration of numbering scheme for operations.

Operation indicated O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O3,2

Fixed ID 1 2 3 4 5 6 7

Fig. 3. Illustration of the machine assignment vector.

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2867
3.3.2. Two-vector code
A two-vector code consists of two vectors: machine assignment

vector and operation sequence vector, corresponding to two
subproblems in the FJSP.

For explaining the two vectors, a fixed ID for each operation is
first given in accordance with the job number and operation order
within the job. This numbering scheme is illustrated in Table 3 for
the instance shown in Table 1. After numbered, the operation can
also be referred to by the fixed ID, for example, operation 6 has the
same reference with the operation O3;1 as shown in Table 3.

A machine assignment vector, denoted by Ri ¼ frið1Þ;
rið2Þ;…; riðdÞg, is an array of d integer values. In the vector, ri(j),
1≤j≤d, represents the operation j chooses the ri(j)th machine in its
alternative machine set. For the problem in Table 1, a possible machine
assignment vector is shown in Fig. 3 and its meaning is also revealed.
For example, rið1Þ ¼ 2 indicates that the operation O1;1 chooses the
second machine in its alternative machine set, that is machine M3.

As for the operation sequence vector, expressed as
Si ¼ fsið1Þ; sið2Þ;…; siðdÞg, it is the ID permutation of all the opera-
tions. The order of occurrence for each operation in Si indicates its
scheduling priority. Take the instance shown in Table 1 for
example, a possible operation sequence vector is represented as
Si ¼ f3;1;4;2;6;5;7g. The OS can be directly translated into a
unique list of ordered operations: O2;1≻O1;1≻ O2;2≻
O1;2≻O3;1≻O2;3≻O3;2. Operation O2;1 has the highest priority and is
scheduled first, then the operation O1;1, and so on. It must be
noted that not all the ID permutations are feasible for the
operation sequence vector because of the designated priority of
operations lying in an job. That is to say, the operations within a
job should keep the relative priority order in Si.

The decoding of the two-vector code is divided into two stages.
The first step is to assign each operation to the selected machine
according to Ri. Then the second is to treat all the operations one
by one according to their order in Si, each operation under
treatment is allocated in the best available processing time for
the corresponding machine. A schedule generated by this way can
be guaranteed to be an active schedule [29]. To encode a schedule
solution to a two-vector code is more direct, the vector Ri is
obtained just through the machine assignment in the schedule,
while the vector Si is attained by sorting all the operations in the
non-decreasing order of the earliest start time.
3.3.3. Conversion techniques
Conversions in the proposed HHS include two different types:

forward conversion and backward conversion.
The forward conversion is to convert a harmony vector repre-
sented by the real-parameter vector Xi ¼ fxið1Þ; xið2Þ;…; xiðdÞ;
xiðdþ 1Þ; xiðdþ 2Þ;…; xið2dÞg to a two-vector code that consists of
two integer-parameter vectors Ri ¼ frið1Þ; rið2Þ;…; riðdÞg and
Si ¼ fsið1Þ; sið2Þ;…; siðdÞg and is divided into two separate parts. In
the first part, we convert Xi;1 ¼ fxið1Þ; xið2Þ;…; xiðdÞg to the machine
assignment vector Ri ¼ frið1Þ; rið2Þ;…; riðdÞg. Let l(j) denote the
number of alternative machines of operation j, where
j¼ 1;2;…; d, and what the conversion needs to do is map the real
number xiðjÞ∈½�δ; δ� to the integer riðjÞ∈½1; lðjÞ�. The concrete pro-
cedure is first convert xi(j) to a real number belong to ½1; lðjÞ� by
linear transformation, then ri(j) is given the nearest integer value
for the converted real number, which is shown in Eq. (2)

riðjÞ ¼ round
1
2δ

ðlðjÞ�1ÞðxiðjÞ þ δÞ þ 1
� �

; j¼ 1;2;…; d ð2Þ

round(x) is the function that rounds the number x to the nearest
integer. In the second part, Xi;2 ¼ fxiðdþ 1Þ; xiðdþ 2Þ;…; xið2dÞg is
converted to the operation sequence vector Si ¼ fsið1Þ;
sið2Þ;…; siðdÞg. To realize this transformation, the largest position
value (LPV) rule [30] is used to construct an ID permutation of
operations by ordering the operations in their non-increasing
position value. However, as mentioned in Section 3.3.2, the
obtained permutation may not be feasible for Si. So, the repair
procedure is further carried out to adjust the relative order of
operations within a job in the permutation. Suppose that we have
a vector Xi;2 ¼ f0:6;�0:4;0:5;�0:2;0:7;0:3;�0:3g for the instance
in Table 1, then an example of conversion is illustrated in Fig. 4.

The backward conversion is to convert a two-vector code to a
harmony vector, which also consists of two separate parts. In the
first part related to machine assignment, the transformation is in
fact an inverse linear transformation of Eq. (2). But the case of
lðjÞ ¼ 1 should be considered alone, and xi(j) should choose a
random value between ½�δ; δ� when lðjÞ ¼ 1. The transformation
can be performed as follows:

xiðjÞ ¼
2δ

lðjÞ�1
ðriðjÞ�1Þ�δ; lðjÞ≠1

xiðjÞ∈½�δ; δ�; lðjÞ ¼ 1

8><
>: ð3Þ



1 2 3 4 5 6 7

0.6 -0.4 0.5 -0.2 0.7 0.3 -0.3

Position

5 1 3 6 4 7 2

0.7 0.6 0.5 0.3 -0.2 -0.3 -0.4

Operation ID permutation

LPV rule

5 1 3 6 4 7 2

Repairing

3 1 4 6 5 7 2

Operation ID permutation

2,i

i

Sorted in non-increasing order

Fig. 4. The conversion from Xi;2 to the operation sequence vector.

O1,1 O1,2

O2,1 O2,2 O2,3

O3,1 O3,2

S E

3 1

4 32

1 2

conjunctive arc

disjunctive arc

Operation Oi, j Oi, j 

starting nodeS

E ending node

Fig. 5. Illustration of disjunctive graph.

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–28772868
where j¼ 1;2;…; d. For the second part, the vector Xi;2 ¼
fxiðdþ 1Þ; xiðdþ 2Þ;…; xið2dÞg is obtained by rearranging elements
in the old Xi;2 before improved. The rearrangement makes the new
Xi;2 correspond to the operation sequence vector of the improved
schedule according to the LPV rule.

3.3.4. Local search strategy
The local search is employed to enhance the local exploitation

ability of HS, which is in fact applied to the schedule correspond-
ing to the harmony vector just as depicted in Fig. 2.

A schedule of the FJSP could be represented by a disjunctive
graph G¼ ðV ;C⋃DÞ [8,28]. In the graph, V represents a set of all the
nodes, each node denotes an operation in the FJSP (including
dummy starting and terminating operations); C is the set of all the
conjunctive arcs, these arcs connect two adjacent operations
within one job and the directions of them represent the processing
order between two connected operations; D means a set of all the
disjunctive arcs, these arcs connect two adjacent operations
performed on the same machine and their direction also show
the processing order. The processing time for each operation is
generally labeled above the corresponding node and regarded as
the weight of the node. Take the problem shown in Table 1 for
instance, a possible schedule represented by the disjunctive graph
is illustrated in Fig. 5, in which O3;1, O2;3 are processed in
succession on the machine M1, O2;1, O1;2 are executed successively
on the machine M2, and O1;1, O2;2, O3;2 are performed in turn on
the machine M3. The longest path from the starting node S to the
ending node E is called the critical path, whose length defines the
makespan for the schedule. Operations on the critical path are
known as critical operations. In Fig. 5, the critical path is
S-O1;1-O2;2-O2;3-E and the makespan equals 10, O1;1, O2;2

and O2;3 are all critical operations.

Algorithm 3. Procedure of generating an acceptable neighborhood.
1:
 Get the critical path in the current solution represented by
the disjunctive graph G.
2:
 for each operation cp in the critical path do

3:
 Delete cp from G to yield G′.

4:
 if an available position is found for cp to insert into then

5:
 Insert the operation cp to yield G″.

6:
 return the disjunctive graph G″.

7:
 end if

8:
 end for

9:
 for each operation cp in the critical path do

10:
 Delete cp from G to yield G′.

11:
 for each operation op in G′ do
12:
 Delete op from G′ to yield G″.

13:
 if two available positions are found for cp and op to

insert into then

14:
 Insert cop and op to yield G‴.

15:
 return the disjunctive graph G‴.

16:
 end if

17:
 end for

18:
 end for

19:
 return an empty disjunctive graph.
In the proposed HHS, a local search similar to the one used in
[17] is adopted, in which the neighborhood of a schedule solution
is obtained by moving one critical operation on a critical path in
the disjunctive graph. The move of an operation is performed in
two steps consisting of deletion and insertion, which means to
delete an operation in the disjunctive graph, then insert it to an
available position to yield no worse schedule. It is notable that the
available position can be chosen on any alternative machine for an
operation to be moved, so the machine assignment for this
operation will be reallocated at the same time when moved to a
different machine. Take the schedule shown in Fig. 5 for instance,
when performing the local search on it, its critical path
S-O1;1-O2;2-O2;3-E is first identified, then we try to move
O1;1, if O1;1 is moved successfully (an available position is found for
O1;1 to insert into), an acceptable schedule is immediately found
and is set as the current schedule to go on the next iteration of
local improvement, otherwise O2;2 is considered to be moved, until
one operation on the critical path is moved successfully. If all the
operations on the critical path fail to move, it indicates that the
local search drops to local optimum of moving one critical
operation.

In our local search procedure, the main difference lies in that
when the local optimum of moving one critical operation is found,
the current solution is further improved by moving two operations
simultaneously, at least one of which is critical. Because moving
two operations is more time consuming, it is only executed when
it is failing to move one critical operation. In summary, the
procedure of getting an acceptable neighborhood in the local
search is described in Algorithm 3, where the keyword “return”
within the loops means that the algorithm is terminated when it
gets here and the content returned is regraded as the final result of
the algorithm. For more details about how to move an operation,



Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2869
refer to [17]. Our local search procedure is terminated when the
maximal local iterations are met or all the specified moves fail.
4. Large neighborhood search

4.1. Outline of LNS

The large neighborhood search (LNS) [20] is a powerful techni-
que, which combines constraint programming (CP) and local
search to solve optimization problems. Unlike typical local search
that makes small changes to the current solution, such as moving
one or two operations in the scheduling, the LNS selects a subset of
variables to relax from the problem. Once variables are chosen,
unassign them while keeping the remaining variables fixed
(destruction), and then search for a better solution by re-
optimizing only the unassigned variables (construction). Steps of
destruction and construction are iterated in the LNS until the
termination condition is met. The basic architecture of LNS is
outlined in Algorithm 4.

Algorithm 4. LNS architecture.
1:
 Produce initial solution.

2:
 while termination condition is not met do

3:
 Choose a subset of variables to relax.

4:
 Fix the remaining variables.

5:
 if search finds improvement then

6:
 Update current solution.

7:
 end if

8:
 end while
The main idea of LNS is simple in fact. Through the operator of
destruction, the original problem is reduced, then the CP is
employed to solve the reduced problem which can overcome the
defect of CP existing in exploring the large search space. The key
benefit from a CP perspective is that the strong CP propagation
techniques can be exploited to prune the search space more
effectively when compared with the pure tree search [31].

Our LNS is implemented on top of the COMET [32], an advanced
optimization system that has been gradually adopted in the
operations research. When using LNS in COMET, the user should
first model the problem to be solved by establishing constraints;
the additional constraints will be added continuously during Steps
4 and 5 in Algorithm 4; once a constraint has been posted, the CP
propagation provided inside the COMET system will be triggered,
which means that all the constraints posted until then, will
participate in the filtering of the domains, one constraint after
the other, until no more values can be removed from any of the
domains. Moreover, every time a solution is found during the
search, a constraint is dynamically added by the system, stating
that the next solution found must be better. For more details about
the working mechanism of the COMET and how it can be used to
solve various combinatorial optimization applications, refer to
[33]. Below, we will describe the implementation of our LNS for
the FJSP based on the COMET, including the constraint-based model,
destruction procedure and construction procedure.

4.2. Constraint-based model for the FJSP

To illustrate the constraint-based model for the FJSP, two more
notations are defined based on Section 2. Let si;j, μi;j denote the
start time and the selected machine of operation Oi,j in the
schedule, respectively. Then, a solution to the FJSP is composed
of pairs of values (si;j, μi;j) for all the operations. The solution is
feasible if it satisfies the following three kinds of constraints:
�
 Precedence constraint: the operation within a job must satisfy
the designated priority order. It is formulated as follows:
∀i∈½1;n�;∀j∈½1;ni�1�;si;j þ pi;j;μi;j≤si;jþ1.
�
 Resource constraint: one operation can only be processed on its
available machines, that is ∀Oi;j; μi;j∈Mi;j.
�
 Capacity constraint: the machine can only process one opera-
tion at a time, which is formulated like this: ∀Ox;y, Oα;β , if
μx;y ¼ μα;β , then sx;y þ px;y;μx;y≤sα;β or sα;β þ pα;β;μα;β≤sx;y.

The FJSP is to minimize the makespan Cmax ¼max1≤i≤n;1≤j≤ni

fsi;j þ pi;j;μi;j g under the above three constraints.

4.3. Destruction procedure

In the destruction procedure, some variables are chosen to
relax while the others are kept fixed. For the FJSP, the partial-order
schedule (POS) relaxation [34] is adopted, which chooses a set Ω of
operations first, then each of the remaining operations is fixed on
the current machine and operations executed on the same
machine are kept their relative precedence order in the current
schedule. Let ðs; μÞ is the current schedule solution and ðs′; μ′Þ is the
one to be constructed. The POS relaxation can be formulated as
follows: ∀Ox;y, Oα;β∉R and μx;y ¼ μα;β , if sx;y þ px;y;μx;y≤sα;β , then s′x;y þ
px;y;μx;y≤s′α;β and μ′x;y ¼ μx;y, μ′α;β ¼ μα;β . It is beneficial for the POS
relaxation to fix only the relative precedence order between the
remaining operations, rather than the actual start time, which
leaves more room for the re-optimization.

Let ϒ be the subset of Ω where each operation is fixed on the
original machine, then how to choose the set ϒ is called the
neighborhood heuristic in LNS. In this paper, the time-window
neighborhood heuristic is adopted, which generates the time
window ½tmin; tmax� randomly and ϒ is the set of all operations
processed between the interval ½tmin; tmax�. To further intensify the
search, an additional neighborhood is constructed from the time-
window neighborhood by selecting a subset ϒDΩ and the
machine assignment of operations in ϒ is fixed, that is
∀Oi;j∈ϒ ; μ′i;j ¼ μi;j.

4.4. Construction procedure

The construction procedure is to form the new schedule
solution based on the current one by using CP search. Our search
method is simple and direct, which relies on the fact that once
each operation is assigned to an available machine and operations
within the same machine are completely ranked under con-
straints, the minimal makespan is equal to the sum of durations
of the operations along the longest path of the precedence graph
(disjunctive graph). Briefly, the search is performed as follows:
assign operations to the chosen machines, considering the opera-
tions with the fewest machine selections first; and then rank
operations on each machine separately, giving priority to those
machines with the least slack; following the rank, the earliest and
latest start time for each operation and the makespan are
calculated according to the precedence graph; finally set the
earliest start time as the start time for all operations. To avoid
searching for too long, the failure limit is set for each construction
procedure of LNS. Moreover, the deep first search is used as our
search controller, and because the search is implemented on the
constraint-based system, it can well inherit the benefit of con-
straint propagation in CP.

5. Integrated search heuristic: HHS/LNS

Given the complexities of the two existing algorithm modules,
our method to integration in this paper is relatively naive. The HHS



Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–28772870
module is executed at first. By the mechanism of HS that replaces
the worst harmony in the HM at each iteration, the HM can also be
regarded as an elite solution pool at the end of running the HHS
algorithm (NI is reached). Because the assignment of machines to
operations is critical for the FJSP, we can extract some good
machine assignment information from the elite solutions in the
HM before entering the LNS module. The procedure of extraction
works as follows: for each operation, the machine selected by the
best harmony in the HM is added to its available machine list,
while the machine among the remaining that selected most
frequently by the other elite solutions is added if its selected
frequency is no less than τ, where τ is the adjustable parameter. So,
each operation has a reduced set of machines to chose from in the
extraction. Following the extraction, the best solution found by the
HHS is used as the initial solution for the LNS, the LNS is then run
for a specified CPU time to further improve it and return the best
solution found.

As described above, our integration features two folds: first, the
best solution found by the HHS provides a good starting point for
the LNS and second, the extracted machine assignment informa-
tion restricts the search of LNS to a more promising problem space,
which could strengthen the ability of intensification.

Obviously, there is much more we could do. However, this
simple integration directly and concisely achieves our motivations
for this research, just as described in Section 1.
Table 4
Parameters setting for the HHS on BRdata.

Parameter Description Value

HMS Harmony memory size 5
HMCR Harmony memory considering rate 0.95
PAR Pitch adjusting rate 0.3
δ Bound factor 1.0
NI The total number of improvisations 3000
itermax The maximum iterations of local search 150

Table 5
Results of HHS on BRdata.

Instance n�m d Flex (LB, UB) HHS

BCmax AV(Cmax) SD AV(CPU)

MK01 10�6 55 2.09 (36, 42) 40 40 0 3.87
MK02 10�6 58 4.10 (24, 32) 26 26.2 0.45 5.79
MK03 15�8 150 3.01 (204, 211) 204 204 0 36.60
MK04 15�8 90 1.91 (48, 81) 60 60 0 13.30
MK05 15�4 106 1.71 (168, 186) 172 172.8 0.45 35.78
MK06 10�15 150 3.27 (33, 86) 59 59.4 0.45 111.65
MK07 20�5 100 2.83 (133, 157) 139 139.8 0.45 26.16
MK08 20�10 225 1.43 523 523 523 0 171.10
MK09 20�10 240 2.53 (299, 369) 307 307 0 172.24
MK10 20�15 240 2.98 (165, 296) 202 203 1.00 437.69
6. Experimental study

6.1. Experimental setup

To test the performance of the proposed algorithms, the HHS
module is implemented in Java, while the LNS module is imple-
mented in the COMET [32] language. Both algorithms are run on an
Intel 2.83 GHz Xeon processor with 15.9 GB of RAM.

In our experiment, two well-known FJSP benchmark sets are
mainly involved. One is the BRdata set of FJSP instances from
Brandimarte [8], which is used to validate the effectiveness of the
proposed HHS algorithm. The other is a set of harder and larger
instances provided by Dauzére-Pérés and Paulli [10], referred as
DPdata, which is adopted to illustrate the effectiveness of the HHS/
LNS for solving hard and large-scale FJSP problems. Moreover, to
have an overall evaluation of our proposed algorithms, we also
summarize the results on another two benchmark data sets in the
literature, which are BCdata set from Barnes and Chambers [35]
and HUdata set from Hurink et al. [9]. Among them, HUdata is
divided into three subsets: Edata, Rdata and Vdata. The best lower
bound (LB) and upper bound (UB) of each benchmark instance
quoted in this paper are taken from [36].

Due to the natural nondeterminacy of the proposed algorithms,
we carry out five runs on each problem instance in order to obtain
meaningful results, just as some existing literatures suggested
[11,13,14]. Four metrics including the best makespan (BCmax), the
average makespan (AV(Cmax)), the standard deviation of makespan
(SD), and the average computational time in seconds (AV(CPU))
obtained among five runs are applied to describe the computa-
tional results.

To show the effectiveness, we compare the results obtained by
the proposed algorithm with the existing algorithms in the
literature, and BCmax and AV(Cmax) are used as the main compar-
ison metrics. Relative deviation criterion represented by (dev) is
employed for the comparison of the makespan, which is defined as

dev¼ ½ðMKcomp�MKproposedÞ=MKcompÞ� � 100% ð4Þ

where MKproposed and MKcomp are the makespan values obtained by
our method and the comparative algorithm, respectively.
The parameters in the HHS algorithm module include harmony
memory size (HMS), harmony memory considering rate (HMCR),
pitch adjusting rate (PAR), the bound factor (δ), the total number of
improvisations (NI), and the maximum iterations of local search
(itermax). The LNS algorithm module has three parameters: the
failure limit for each construction procedure (maxFail), the prob-
ability of the operation in Ω belonging to ϒ (Pl), and the maximum
CPU time limit (Tmax). For the integrated method HHS/LNS, there is
another parameter τ that is mentioned in Section 5 besides the
parameters in the HHS and LNS. The parameters will be specified
for the corresponding experiment, which are set in such a way that
a relatively good trade-off between solution quality and computa-
tional time can be obtained.

6.2. Performance analysis of the HHS module

In this section, the performance of the HHS algorithm is
analyzed. First, BRdata is investigated to validate the effectiveness
of our proposed HHS. The parameters of the HHS algorithm for this
set of instances are given in Table 4.

Our computational results for the HHS on BRdata are reported
in Table 5. The first and second columns include the name and size
of the instance, respectively. The third column lists the total
number of all operations for the instance. In the fourth column,
the average number of alternative machines for each operation is
shown for each instance, which is called “flexibility” in the FJSP. In
the fifth column, (LB, UB) stand for the best lower and upper
bounds of the instance, respectively. The following columns
describe the four metrics mentioned in Section 6.1.

In Table 6, the HHS algorithm is compared with several recently
proposed evolutionary-based algorithms, including GA of Pezzella
et al. [13], KBACO of Xing et al. [16], AIA of Bagheri et al. [15], and
ABC of Wang et al. [17]. The AV(Cmax) of GA and AIA are not
available. In Table 7, we compare our HHS algorithm with other
categories of techniques, including TS of Mastrolilli and Gambar-
della [11], and CDDS of Hmida et al. [22]. The bold values indicate
that the corresponding algorithm found to be the best among the
referred approaches. dev is used for the comparing of the best



Table 6
Comparison of the proposed HHS with four existing evolutionary-based algorithms on BRdata.

Instance HHS GA KBACO AIA ABC

BCmax AV(Cmax) BCmax dev(%) BCmax AV(Cmax) dev(%) BCmax dev(%) BCmax AV(Cmax) dev(%)

MK01 40 40 40 0 39 39.8 �2.56 40 0 40 40 0
MK02 26 26.2 26 0 29 29.1 +10.34 26 0 26 26.5 0
MK03 204 204 204 0 204 204 0 204 0 204 204 0
MK04 60 60 60 0 65 66.1 +7.69 60 0 60 61.22 0
MK05 172 172.8 173 +0.58 173 173.8 +0.58 173 +0.58 172 172.98 0
MK06 59 59.4 63 +6.35 67 69.1 +11.94 63 +6.35 60 64.48 +1.67
MK07 139 139.8 139 0 144 145.4 +3.47 140 +0.71 139 141.42 0
MK08 523 523 523 0 523 523 0 523 0 523 523 0
MK09 307 307 311 +1.29 311 312.2 +1.29 312 +1.60 307 308.76 0
MK10 202 203 212 +4.72 229 233.7 +11.79 214 +5.61 208 212.84 +2.88
Average improvement +1.29 +4.45 +2.09 +0.46

Table 7
Comparison of the proposed HHS with other categories of techniques (TS, CDDS) on BRdata.

Instance HHS TS CDDS

BCmax AV(Cmax) BCmax AV(Cmax) dev(%) N1 dev(%) N2 dev(%) N3 dev(%) N4 dev(%)

MK01 40 40 40 40 0 40 0 40 0 40 0 40 0
MK02 26 26.2 26 26 0 26 �0.77 26 �0.77 26 �0.77 26 �0.77
MK03 204 204 204 204 0 204 0 204 0 204 0 204 0
MK04 60 60 60 60 0 60 0 60 0 60 0 60 0
MK05 172 172.8 173 173 +0.58 175 +1.26 173 +0.12 173 +0.12 173 +0.12
MK06 59 59.4 58 58.4 �1.72 60 +1.00 59 �0.68 59 �0.68 58 �2.41
MK07 139 139.8 144 147 +3.47 139 �0.58 139 �0.58 139 �0.58 139 �0.58
MK08 523 523 523 523 0 523 0 523 0 523 0 523 0
MK09 307 307 307 307 307 307 0 307 0 307 0 307 0
MK10 202 203 198 199.2 �2.02 198 �2.53 197 �3.05 198 �2.53 198 �2.53
Average improvement +0.03 �0.16 �0.50 �0.44 �0.62

0 20 40 60 80 100

2200

2300

2400

2500

2600

2700

2800

2900

3000

M
ak

es
pa

n

Generation

 BCmax

 AV(Cmax)

Fig. 6. Convergence curves in solving the instance 08a by the proposed HHS.

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2871
makespan obtained between the HHS and other methods except
for the CDDS. Different from the other aforesaid algorithms, the
CDDS is deterministic by nature, and it is not a single algorithm. In
fact, it consists of a group of four deterministic algorithms (CDDS-
N1, CDDS-N2, CDDS-N3, and CDDS-N4). So, to make a fairer
comparing, dev for the CDDS-N1 (or CDDS-N2, CDDS-N3, CDDS-
N4) is computed by comparing HHS against CDDS-N1 (or CDDS-N2,
CDDS-N3, CDDS-N4) based upon the average performance of HHS
instead of using the best performance.

As can be seen from Table 6, the proposed HHS compares
favorably with the other evolutionary-based algorithms on the
BRdata. In fact, the HHS outperforms GA in 4 out of 10 instances,
outperforms KBACO in 7 out of 10 instances, outperforms AIA in
5 out of 10 instances, and outperforms ABC in 2 out of 10
instances, in terms of BCmax. For the instances MK06 and MK10,
the HHS obtains a better solution than any of them. Measures
concerning average relative deviation also reveal that all the four
existing evolutionary-based algorithms are dominated by the
proposed HHS. From Table 7, the HHS is also comparable with TS
and CDDS. In particular, the HHS obtains 8 best BCmax out of 10
instances among the three algorithms. Considering the average
relative deviation, the HHS is a little better than the TS, but is
slightly worse than all the four CDDS algorithms.

From Table 5, the HHS not only shows strong ability but also
stability and efficiency. Half of the instances are solved with the SD
is equal to 0, while the rest with small SD values. Moreover, all 10
instances are computed in no more than 3 min except for the
instance MK10. Based on the simulation tests and comparison
study, it is safe to conclude that the HHS is enough for solving
some medium to large FJSP instances effectively, efficiently, and
robustly.
To further illustrate the property of the HHS, a large-scale FJSP
instance (08a) in DPdata is used. The parameter of HMS is set as 8,
others are set according to Table 4. In Fig. 6, the typical conver-
gence curves obtained by the HHS when solving the instance 08a
are depicted. From Fig. 6, it can be seen that the decreasing of the
makespan is very fast during the initial 10 generations, but the
speed gets much slower in the following generations. In other
words, the HHS could generate high quality solutions in related
short time, but the solutions are harder to be further improved
with the evolution procedure in progress.



Table 8
Performance of the HHS on the instance 08a under different parameter settings.

Experiment number itermax NI¼ 1000 NI¼ 3000 NI¼ 5000

BCmax AV(Cmax) AV(CPU) BCmax AV(Cmax) AV(CPU) BCmax AV(Cmax) AV(CPU)

1 150 2136 2166 47.83 2124 2142.6 176.09 2124 2132.2 279.22
2 300 2086 2090.2 479.99 2082 2087 1455.79 2082 2085 2386.80
3 450 2086 2088.2 483.28 2080 2086.4 1460.77 2080 2083.2 2434.54

Table 9
Performance of the LNS on instances 07a, 08a, 09a.

Instance Initial Time (s) BKS

500 1000 1500 2000

07a 3094 2370 2357 2347 2327 2283
08a 4639 2893 2515 2409 2355 2069
09a 8447 7045 6561 6058 4888 2066

0 50 100 150 200

5

6

7

8

9

10
P

er
ce

nt
ag

e 
fro

m
 th

e 
re

sp
ec

tiv
e 

be
st

 k
no

w
n 

so
lu

tio
n 

(%
)

Time (s)

 07a
 08a
 09a

Fig. 7. Decreasing of the makespan in solving instances 07a, 08a, 09a by the LNS.

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–28772872
In Table 8, the performance of the HHS on the instance 08a
under different parameter settings is listed. Here, we only adjust
the parameters itermax and NI, which are important for the quality
of solutions. Other parameters are kept fixed. From Table 8, it can
be seen that the parameter itermax imposes more impact on the
final solution. The makespan values obtained in Experiment 2 is
much better than the ones obtained in Experiment 1, but the
computation time is much longer. There is little difference
between the results in Experiment 2 and Experiment 3 and this
is because the local iterated times 300 is big enough for almost
every local search to find the local optima. Thus, to further
increase the itermax at this time is meaningless to the solution.
The enlargement of the parameter NI can also improve the quality
of the solution, but the improvement is more limited compared
with the increase of itermax, and there seems to be no effect to
increase NI further as it reaches a certain value. In all the three
experiments, BCmax remains the same when NI increases from
3000 to 5000. Our computational results in Table 8 also indicate
that it is quite difficult to improve the high quality solution further
by the proposed HHS, no matter through increasing the parameter
NI or itermax.

6.3. Performance analysis of the LNS module

In this section, we will analyze the performance of the LNS
module. Three large-scale FJSP instances (07a, 08a, 09a) with the
increasing problem space in DPdata are used for this investigation.
First, the LNS is run directly on the three instances, where the
parameters maxFail¼ 200; Pl ¼ 0:33; Tmax ¼ 2000 s. The detailed
results are given in Table 9. The first column shows the name of
the instance. In the second column, the initial solution of the LNS
for each instance is listed, which is the first feasible solution found
by the CP-based search. The following four columns record the
minimum makespan obtained by the LNS every 500 s. The last
column represents the best known solution in the literature for
each instance. From Table 9, it can be seen that the initial solution
for each instance is poorer with the size of the problem space
increasing, the initial solutions of instances 07a, 08a, 09a are about
35.5%, 124.2%, 308.8%, respectively, from the corresponding best
known ones. As for the final solutions obtained after 2000 s, the
situation is similar, only the solution for the instance 07a is
relatively acceptable, which is about 1.9% from the best known
ones. The other two for instances 08a and 09a are quite poor,
which are about 13.8% and 136.6% from the best known ones. And
the poor quality of final solutions for instances 08a and 09a is
partly due to their poor initial solutions, so it is necessary to
provide a good initial solution for the LNS. Moreover, for every
instance, the makespan decreases with the computation time
increasing, but the changes of decreasing speed does not appear
with certain regularity.

In the following, we will observe the decreasing speed of the
makespan when solving instances with different problem spaces
by the LNS. In Fig. 7, we draw the decrease of the makespan for
instances 07a, 08a, 09a. To have a fair comparison, the starting
solutions of decreasing for the three instances are all set as 10%
from their best known solutions. From Fig. 7, it can be seen that
the overall decreasing speed of the makespan for the instance 07a
is the fastest, while for the instance 09a is the slowest. It seems
that the LNS generally shows a stronger ability of intensification
during search when tackling the instance with smaller problem
space.

6.4. Effects of integration

Based on the above performance analysis, the effects of
integration are foreseeable. First, the experiments in Section 6.2
indicate that the solution is hard to improve further when the
evolution procedure of the HHS reaches a certain level. Second,
Section 6.3 reveals that the initial solution is one of the important
factors when solving some large-scale problems and the LNS could
show stronger search ability on the smaller problem space. In
addition, the results in Table 9 show that the pure LNS algorithm is
not an ideal optimization tool for the FJSP. So, the integration
presented in Section 5 is necessary and reasonable, which over-
comes the disadvantages of both algorithms.

In Fig. 8, the impact of the machine assignment information
extraction is illustrated, where the instance 08a is used. The curve



Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2873
with circle points depicts the decreasing of the makespan by
executing the LNS directly on the initial solution provided by the
HHS, while the curve with triangular points describes the case
after the procedure of extraction. From Fig. 8, it can be seen that
the LNS could effectively improve the high quality solution
obtained by the HHS, and the clear benefit of the extraction is
also displayed.
0 100 200 300 400 500

2072

2074

2076

2078

2080

2082

2084

2086

2088

M
ak

es
pa

n

Time (s) 

 HHS/LNS
 LNS

Fig. 8. The impact of the machine assignment information extraction.

Table 10
Parameters setting for the HHS/LNS on DPdata.

Parameter Description Value

HMS Harmony memory size 8
HMCR Harmony memory considering rate 0.95
PAR Pitch adjusting rate 0.3
NI The total number of improvisations 3000
δ Bound factor 1.0
itermax The maximum iterations of local search 300
maxFail The failure limit for each construction procedure 200
Pl The probability of the operation in Ω belonging to ϒ (Pl) 0.33
τ The limit of selected frequency 3

Table 11
Results on DPdata instances.

Instance n�m d Flex (LB, UB) HHS

BCmax AV(Cmax) SD

01a 10�5 196 1.13 (2505, 2530) 2525 2534 6.28
02a 10�5 196 1.69 (2228, 2244) 2242 2245.4 2.07
03a 10�5 196 2.56 (2228, 2235) 2229 2231.2 1.48
04a 10�5 196 1.13 (2503, 2565) 2506 2517 8.34
05a 10�5 196 1.69 (2189, 2229) 2232 2234.6 2.41
06a 10�5 196 2.56 (2162, 2216) 2201 2206.8 3.77
07a 15�8 293 1.24 (2187, 2408) 2323 2340.2 12.28
08a 15�8 293 2.42 (2061, 2093) 2086 2087.6 1.52
09a 15�8 293 4.03 (2061, 2074) 2074 2079 3.32
10a 15�8 293 1.24 (2178, 2362) 2341 2346.4 5.03
11a 15�8 293 2.42 (2017, 2078) 2077 2079.8 2.77
12a 15�8 293 4.03 (1969, 2047) 2045 2052.6 9.81
13a 20�10 387 1.34 (2161, 2302) 2280 2291.2 6.94
14a 20�10 387 2.99 (2161, 2183) 2194 2195.2 1.10
15a 20�10 387 5.02 (2161, 2171) 2220 2230.2 6.72
16a 20�10 387 1.34 (2148, 2301) 2285 2289 5.10
17a 20�10 387 2.99 (2088, 2169) 2160 2166.6 4.93
18a 20�10 387 5.02 (2057, 2139) 2159 2170.2 6.53
6.5. Computational results on large-scale benchmark instances

In this section, we will demonstrate the effectiveness of our
proposed integrated search heuristic HHS/LNS for solving large-
scale FJSP problems. So, the HHS/LNS is evaluated on the instances
in DPdata, which is one of the most hardest and largest benchmark
data sets in the FJSP literature. The common parameters of the
HHS/LNS algorithm for this set of instances are shown in Table 10.
The maximum CPU time limit for the LNS in the HHS/LNS (Tmax) is
set as 500 s for the first 12 instances (01a–12a), while twice for the
remaining ones.

Table 11 displays the detailed computational results for the
instances considered in DPdata. Columns 1–5 correspond to the
same quantities of Table 5. In columns 6–8, the original results
obtained by the HHS are firstly presented. The results obtained by
running the LNS directly on DPdata instances are listed in columns
9–11 to have a contrast with the results of the HHS/LNS, where the
maximum CPU time limit of the LNS is extended to 2000 and
3000 s for the instances 01a–12a and instances 13a–18a, respec-
tively. In the last four columns, four metrics mentioned in Section
6.1 for the HHS/LNS are described in detail. In Table 11, the HHS/
LNS is compared with three state-of-the-art algorithms, which are
TS of Mastrolilli and Gambardella [11], hGA of Gao et al. [14] and
CDDS of Hmida et al. [22]. BCmax and AV(Cmax) denote the best and
average makespan obtained among the five independent runs,
respectively, for the algorithms HHS/LNS, TS and hGA. The CDDS
are deterministic algorithms, so we compare the AV(Cmax) of HHS/
LNS with the results of CDDS by using the metric dev for making a
fairer comparison, just as mentioned in Section 6.2.

From Table 12, it can be seen that our results are quite
competitive with state-of-the-art algorithms. The proposed HHS/
LNS have a generally superior performance in terms of BCmax and
AV(Cmax) compared with TS, hGA and CDDS. As for the BCmax, the
HHS/LNS outperforms TS in 12 out of 18 instances, outperforms
hGA in 15 out of 18 instances, and outperforms CDDS-N1, CDDS-N2,
CDDS-N3, and CDDS-N4 in 15, 14, 16, and 14 out of 18 instances,
respectively, the HHS/LNS does not yield the best only for
6 instances, but the results are slightly worse, which are in average
0.2% from the best ones. Overall, the integrated search heuristic
HHS/LNS outperforms TS and hGA by 0.09% and 0.23% on total 18
instances in terms of average dev, respectively. From the average
dev for the CDDS, our HHS/LNS is better than any of four CDDS
algorithms even if we compare the AV(Cmax) of the HHS/LNS with
LNS HHS/LNS

BCmax AV(Cmax) SD BCmax AV(Cmax) SD AV(CPU)

2554 2560 8.25 2505 2512.8 7.12 837.6
2233 2235.8 3.27 2230 2231.2 1.64 972.6
2230 2231.2 2.08 2228 2229 1.00 1164.6
2506 2522.4 25.81 2506 2506 0 849.6
2219 2222 3.94 2212 2215.2 2.39 931.2
2213 2215.6 1.82 2187 2191.8 2.77 1167.0
2327 2358.8 23.34 2288 2303 11.46 1547.4
2226 2278.6 73.08 2067 2073.8 5.16 1905.6
4004 4503 445.40 2069 2072.8 3.56 943.2
2357 2390.4 18.77 2297 2302.2 7.19 1590.0
2221 2289.2 55.92 2061 2066.6 3.28 1826.4
3765 4639 637.83 2027 2035.6 5.81 914.4
2365 2374.2 13.74 2263 2269.4 4.39 2900.3
3585 3743.2 162.67 2164 2167.6 2.07 3237.5

10,081 10,324.8 466.59 2163 2166.2 3.03 2112.3
2352 2372 15.76 2259 2266.4 5.46 2802.2
3568 3658 134.82 2137 2141.2 2.95 3096.4

10,036 10,683.8 594.23 2124 2128 3.87 2489.2



Table 12
Comparison between the proposed HHS/LNS and state-of-the-art algorithms on DPdata.

Instance HHS/LNS TS hGA CDDS

BCmax AV(Cmax) BCmax AV(Cmax) dev(%) BCmax AV(Cmax) dev(%) N1 dev(%) N2 dev(%) N3 dev(%) N4 dev(%)

01a 2505 2512.8 2518 2528 +0.52 2518 2518 +0.52 2518 +0.21 2530 +0.68 2530 +0.68 2520 +0.29
02a 2230 2231.2 2231 2234 +0.04 2231 2231 +0.04 2231 �0.01 2244 +0.57 2232 +0.04 2231 �0.01
03a 2228 2229 2229 2229.6 +0.04 2229 2229.3 +0.04 2229 0 2235 +0.27 2230 +0.04 2233 +0.18
04a 2506 2506 2503 2516.2 �0.12 2515 2518 +0.36 2510 +0.16 2520 +0.56 2507 +0.04 2503 �0.12
05a 2212 2215.2 2216 2220 +0.18 2217 2218 +0.23 2220 +0.22 2219 +0.17 2216 +0.04 2217 +0.08
06a 2187 2191.8 2203 2206.4 +0.73 2196 2198 +0.41 2199 +0.33 2214 +1.00 2201 +0.42 2196 +0.19
07a 2288 2303 2283 2297.6 �0.22 2307 2309.8 +0.82 2299 �0.17 2283 �0.88 2293 �0.44 2307 +0.17
08a 2067 2073.8 2069 2071.4 +0.10 2073 2076 +0.29 2069 �0.23 2069 �0.23 2069 �0.23 2069 �0.23
09a 2069 2072.8 2066 2067.4 �0.10 2066 2067 �0.10 2069 �0.18 2066 �0.33 2066 �0.33 2066 �0.33
10a 2297 2302.2 2291 2305.6 �0.74 2315 2315.2 +0.78 2301 �0.05 2291 �0.49 2307 +0.21 2311 +0.38
11a 2061 2066.6 2063 2065.6 +0.10 2071 2072 +0.48 2078 +0.55 2069 +0.12 2078 +0.55 2063 �0.17
12a 2027 2035.6 2034 2038 +0.34 2030 2030.6 +0.15 2034 �0.08 2031 �0.23 2040 +0.22 2031 �0.23
13a 2263 2269.4 2260 2266.2 �0.13 2257 2260 �0.27 2257 �0.55 2265 �0.19 2260 �0.42 2259 �0.46
14a 2164 2167.6 2167 2168 +0.14 2167 2167.6 +0.14 2167 �0.03 2189 +0.98 2183 +0.71 2176 +0.39
15a 2163 2166.2 2167 2167.2 +0.18 2165 2165.4 +0.09 2167 +0.04 2165 �0.06 2178 +0.54 2171 +0.22
16a 2259 2266.4 2255 2258.8 �0.18 2256 2258 �0.13 2259 �0.33 2256 �0.46 2260 �0.28 2256 �0.46
17a 2137 2141.2 2141 2144 +0.19 2140 2142 +0.14 2143 +0.08 2140 �0.06 2156 +0.69 2143 +0.08
18a 2124 2128 2137 2140.2 +0.61 2127 2130.7 +0.14 2137 +0.42 2127 �0.05 2131 +0.14 2131 +0.14
Average improvement +0.09 +0.23 +0.02 +0.08 +0.15 +0.01

Table 13
The makespan of new best-known solutions identified by the proposed HHS/LNS
on DPdata.

Instance (LB, UB) Prev. best known New best known

01a (2505, 2530) 2518 2505
02a (2228, 2244) 2231 2230
03a (2228, 2235) 2229 2228
05a (2189, 2229) 2216 2212
06a (2162, 2216) 2196 2187
08a (2061, 2093) 2069 2067
11a (2017, 2078) 2063 2061
12a (1969, 2047) 2030 2027
14a (2161, 2183) 2167 2164
15a (2161, 2171) 2165 2163
17a (2088, 2169) 2140 2137
18a (2057, 2139) 2127 2124

Table 14
Comparison of total computational time (in seconds) required by HHS/LNS, TS, hGA,
and CDDS on DPdata.

Algorithm HHS/LNS TS hGA CDDS

CI-CPU 6279 2467 6206 2890

Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–28772874
the results of CDDS. It is also very encouraging that the HHS/LNS
obtains a remarkable 12 new best known solutions to instances
01a, 02a, 03a, 05a, 06a, 08a, 11a, 12a, 14a, 15a, 17a and 18a in
DPdata. The ability of the HHS/LNS to establish new best known
solutions with reasonable computing effort strongly proves its
effectiveness. In Table 13, we record both the previous and our
newly obtained best known solutions to instances in DPdata.
Among them, the best lower bound for the instances 01a and
03a is equal to 2505 and 2228, respectively [10], so the instances
01a and 03a are solved optimally by our integrated method. An
optimal solution attained by our algorithm for the instance 03a is
illustrated in the Appendix.

From Table 11, the average computation time of the HHS/LNS
on DPdata is much longer than those of HHS on BRdata. It is not
surprising because the instances from DPdata are harder and
larger and certainly deserve more search effort. Considering very
recent and related literature, such as Oddi et al. set CPU time limit
of 3200 s on an AMD Phenom II X4 Quad 3.5 GHz to solve a few
large FJSP instances [24], while Beck and Feng execute their
algorithm on a cluster with 2 GHz Dual Core AMD Opteron 270
nodes, each with 2 GB of RAM for 3600 s to cope with some hard
JSP problems [5]. Thus, the efficiency of our proposed HHS/LNS on
solving large-scale FJSP instances is quite acceptable and reason-
able. As for a little bigger SD values, it may be explained that our
HHS/LNS is composed of two algorithm modules and could be
affected by more nondeterministic factors, another possible reason
is attributed to the huge values of operation processing time for
the instances in DPdata. From the results obtained by the pure
LNS, it can be concluded that the LNS is not comparable with the
HHS/LNS, especially for instances with larger problem space. For
example, the LNS obtains the same BCmax with the HHS/LNS on the
instance 04a, but it yields quite bad solutions on the instance 12a.

In Table 14, we make the direct comparison of computational
effort required by HHS/LNS, TS, hGA, and CDDS. Line CI-CPU gives
the sum of the average computer-independent CPU time on
instances in DPdata for each algorithm. All these values have been
processed using the normalization coefficients of Dongarra [37],
given different performances of different CPUs. In addition, our
HHS and LNS are coded in Java and COMET language, respectively,
while the other three algorithms are all coded in C/C++. It is well
known that the efficiency of Java is much lower than that of C/C++,
and the COMET language is in general 3–5 times slower than the
comparable C/C++ code [38]. So, we further divide the amount of
computational time HHS/LNS takes by a factor of 4 for making a
fairer comparison. It should be noted that the comparison between
CPU time is mean to be indicative, because we do not have access
to other information that influences the computation time, such as
the operating systems, software engineering decisions, and coding
skills of the programmer. From Table 14, it can be found that the
computational effort of HHS/LNS is comparable with that of hGA,
but is much more than that of TS and CDDS. Nevertheless, the
computational time of all four algorithms on the large-scale
instances are all within a factor of three.

From Tables 6 and 7, the HHS could not obtain the best results
on several instances in BRdata. Thus, it seems interesting to run
the HHS/LNS on BRdata to further refine the solutions obtained by
the HHS, although the instances in BRdata are generally not so
large-scale as those in DPdata. The best makespan values obtained



Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2875
by the HHS, LNS, and HHS/LNS on BRdata are listed in Table 15,
where the maximum CPU time limit of the pure LNS is set as
1000 s. Unfortunately, as can be seen from Table 15, it is not so
encouraging as expected. The HHS/LNS improve the solutions to
only two instances (MK06 and MK10) based on HHS, and does not
achieve any new best known solution. The reason may be that the
solutions yielded by the HHS alone have reached or are quite close
to the actual optimum ones of BRdata instances. It is worth noting
that the true optimal solutions for the BRdata instances are not
known except for the instances MK03 and MK09, whose LB values
can be verified by the algorithms. Moreover, the performance of
pure LNS on BRdata is also comparable with that of HHS and HHS/
LNS. Recalling the results obtained by the HHS/LNS on DPdata, it
appears to be more promising to use HHS/LNS for solving
problems which are relatively large and hard, because there may
exist larger gaps between the true optimal solutions and the
solutions obtained by the state-of-the-art algorithms for these
problems.

Table 16 summarizes the computational results over all the
concerned benchmark instances in terms of mean relative error
(MRE). The first column reports the data set, the second column
reports the number of instances for each data set, the third column
reports the average number of alternative machines per operation,
the next seven columns report the MRE of the best solution
obtained by the HHS, pure LNS, HHS/LNS, TS of Mastrolilli and
Gambardella [11], hGA of Gao et al. [14], CDDS of Hmida et al. [22]
and M2h of Bozejko et al. [12]. The maximum CPU time limit of the
pure LNS is set as 2000 s for BCdata and HUdata instances. For
each instance, the relative error (RE) is defined as
RE¼ ½ðMK�LBÞ=LB� � 100%, in which MK is the best makespan
obtained by the referred algorithm and LB is the best-known lower
bound. Through the experiment, we find that our HHS alone can
solve many instances in HUdata optimally. So, for the integrated
method HHS/LNS, if an instance can solved optimally by the HHS,
then the LNS would not be executed. From Table 16, it can be seen
that our HHS/LNS outperforms all the other algorithms on DPdata,
BCdata, Hurink Edata, and Hurink Rdata. But the HHS/LNS is
dominated by both the hGA and CDDS on BRdata, and by both
the TS and hGA on Hurink Vdata. It should be noted that the LNS
Table 15
The comparison of best makespan obtained by the HHS, LNS, and HHS/LNS on
BRdata.

Instance HHS LNS HHS/LNS

MK01 40 40 40
MK02 26 26 26
MK03 204 204 204
MK04 60 60 60
MK05 172 173 172
MK06 59 60 58
MK07 139 140 139
MK08 523 523 523
MK09 307 307 307
MK10 202 206 198

Table 16
Mean relative error (MRE) over best-known lower bound.

Data set Num. Alt. HHS (%) LNS (%)

BRdata 10 2.59 15.52 16.20
DPdata 18 2.49 2.90 63.03
BCdata 21 1.18 22.86 22.73
Hurink Edata 43 1.15 2.34 2.32
Hurink Rdata 43 2 1.41 1.44
Hurink Vdata 43 4.31 0.19 30.27

Note: N/A means that the corresponding data is not available.
alone could achieve good performance on BCdata and Hurink
Edata, although it is still worse than the HHS/LNS. Recalling that
the work of Pacino and Van Hentenryck [23] claims that their
proposed large neighborhood search using random selection of
the relaxations is very effective on Hurink Edata, our results are
basically consistent with theirs. It seems that the LNS is more
adaptive to solve the instances with a lower degree of flexibility
(BCdata and Hurink Edata). However, the good performance of the
LNS generally could not be kept when dealing with the large-scale
instances with a higher degree of flexibility. The extremely poor
results of the LNS on Hurink Vdata are just illustrative of this point.
Moreover, the results of the LNS also confirm one of our motiva-
tions for this study, which is that the intensification ability of the
LNS degrades heavily along with the increase of problem space.
7. Conclusion and future work

In this paper, two algorithm modules, denoted as HHS and LNS,
have been developed for the FJSP with makespan criterion. The
HHS bears features of evolution-based approaches with the
memetic paradigm, while the LNS is a typical constraint-based
approach. Considering the advantage and deficiency of the two
algorithms, an integrated search heuristic HHS/LNS is established
on the base of them. The HHS/LNS is in fact a two-stage algorithm,
which starts by executing the HHS, and then the LNS is adopted to
further improve the solution obtained by the HHS. To intensify the
search of LNS, some good machine assignment information is
extracted from the elite solutions in the HM before entering the
LNS module, which limits the LNS to a more promising problem
space. Empirical results demonstrate that the proposed HHS/LNS
shows the competitive performance with state-of-the-art algo-
rithms on large-scale FJSP problems, new upper bounds have been
found for 12 out of 18 instances considered in DPdata, while the
remaining are about 0.2% on average from the best known
solutions. In addition, the evaluation of the HHS/LNS on the other
benchmarks also proves its effectiveness.

Indeed, we prefer to regard our integrated method as a kind of
framework rather than a single algorithm. The solution procedures
used in this paper can be generally divided into three steps: First,
an evolutionary algorithm is run on the problem until the solution
is hard to improve; second, extract some information from the
elite solutions obtained by the evolutionary algorithm, and reduce
the problem space according to the extracted information; third, a
search method with a strong intensification ability is executed on
the reduced problem to further improve the solution obtained by
the evolutionary algorithm. In our opinion, the HHS/LNS is only an
instance of the framework, and the other suitable alternatives can
replace HHS or LNS to form new algorithms. The HHS is used in
this paper mainly because of its simple structure and high
efficiency.

In future research, we will focus on improving the efficiency
and stability of our proposed HHS/LNS. How to better balance the
search of HHS and LNS should also be considered, which concerns
HHS/LNS(%) TS (%) hGA (%) CDDS (%) M2h (%)

14.98 15.14 14.92 14.98 N/A
1.89 2.01 2.12 1.94 N/A

22.43 22.53 22.61 22.54 22.53
2.11 2.17 2.13 2.32 N/A
1.18 1.24 1.19 1.34 N/A
0.11 0.095 0.082 0.12 N/A



Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–28772876
the maximization of the strength of both algorithms. In addition, it
would be interesting to investigate the performance of the
integrated method by replacing HHS or LNS with the other better
alternatives. Lastly, a possible research direction is to introduce the
LNS into evolutionary algorithms instead of traditional local search
to form the memetic framework. Compared with the traditional
local search, the LNS can involve more variables and is more
efficient in handling constraints, so it is expected to achieve good
performance when embedded into evolutionary algorithms.
Acknowledgment

This work was supported by National Natural Science Founda-
tion of China (Grant no. 61175110), National S&T Major Projects of
China (Grant no. 2011ZX02101-004) and National Basic Research
Program of China (973 Program) (Grant no. 2012CB316305).
Appendix A

For a detailed scheduling of all the new best known solutions
listed in Table 13, refer to http://learn.tsinghua.edu.cn:8080/
2010210742/NBKS.rar.

Here, an optimal solution obtained by the HHS/LNS for the
instance 03a in DPdata with the makespan of 2228 is illustrated in
the following. The starting and completion time of the operations
assigned to each machine are given as follows:

M1: (O8,1: 0–55)(O8,2: 55–108)(O3,2: 108–188)(O10,3: 188–246)
(O10,4: 246–303) (O10,5: 303–333)(O10,6: 333–393)(O8,4: 393–448)
(O1,4: 448–464)(O7,4: 464–497)(O5,3: 497–588)(O2,4: 588–633)(O9,7:
633–675)(O3,7: 675–699)(O3,8: 699–788)(O8,7: 788–861)(O8,8: 861–
891)(O2,7: 891–922)(O7,8: 922–971)(O1,8: 971–1000)(O7,9: 1000–
1034)(O8,10: 1034–1084)(O10,11: 1084–1126)(O6,9: 1126–1226)
(O2,10: 1226–1246)(O5,11: 1246–1340)(O7,12: 1340–1399)(O9,13:
1399–1442)(O2,13: 1442–1520)(O5,13: 1520–1619)(O3,18: 1619–1680)
(O5,15: 1680–1708)(O6,12: 1708–1724)(O6,13: 1724–1810)(O7,15: 1810–
1889) (O7,16: 1889–1899) (O2,18: 1899–1937) (O5,18: 1937–2006)
(O1,14: 2006–2068)(O8,23: 2068–2136)(O10,19: 2136–2186)(O5,21:
2186–2228).

M2: (O6,1: 0–100)(O2,1: 100–141)(O10,2: 141–182)(O6,2: 182–250)
(O9,4: 250–286)(O2,3: 286–349)(O3,4: 349–388)(O3,5: 388–486)(O9,6:
486–568)(O6,6: 568–594)(O5,4: 594–637)(O5,5: 637–669)(O4,7: 669–
738)(O5,6: 738–792)(O2,6: 792–865)(O1,6: 865–889)(O1,7: 889–952)
(O6,7: 952–981)(O9,9: 981–1032)(O1,9: 1032–1115)(O2,9: 1115–1126)
(O1,10: 1126–1149)(O3,13: 1149–1184)(O10,12: 1184–1217)(O4,12: 1217–
1278)(O6,10: 1278–1365) (O3,15: 1365–1398)(O3,16: 1398–1457)
(O8,15: 1457–1523)(O2,14: 1523–1560)(O2,15: 1560–1628)(O9,16:
1628–1646)(O9,17: 1646–1709)(O9,18: 1709–1808)(O5,17: 1808–1905)
(O6,14: 1905–1941)(O10,18: 1941–1964)(O8,21: 1964–2023)(O2,19:
2023–2072)(O9,22: 2072–2159)(O2,20: 2159–2228).

M3: (O10,1: 0–81)(O9,2: 81–139)(O9,3: 139–204)(O3,3: 204–287)
(O1,1: 287–329)(O8,3: 329–348)(O1,2: 348–410)(O1,3: 410–432)(O10,7:
432–484)(O8,5: 484–572)(O1,5: 572–668) (O7,6: 668–742)(O9,8: 742–
824)(O5,7: 824–916)(O8,9: 916–964)(O3,10: 964–1008)(O6,8: 1008–
1028)(O3,11: 1028–1089) (O3,12: 1089–1142)(O9,11: 1142–1177)(O9,12:
1177–1255)(O8,12: 1255–1330) (O2,11: 1330–1420)(O2,12: 1420–
1441)(O1,11: 1441–1507)(O9,14: 1507–1584)(O9,15: 1584–1626)
(O7,14: 1622–1699)(O4,15: 1699–1730)(O10,16: 1730–1794)(O3,19:
1794–1850)(O8,20: 1850–1944)(O6,15: 1944–2017)(O5,19: 2017–2078)
(O4,17: 2078–2118)(O4,18: 2118–2181)(O9,23: 2181–2227).

M4: (O3,1: 0–73)(O7,1: 73–114)(O5,1: 114–209)(O4,2: 209–279)
(O6,3: 279–362)(O7,3: 362–385)(O9,5: 385–430)(O6,4: 430–499)
(O7,5: 499–591)(O4,6: 591–651)(O2,5: 651–742)(O4,8: 742–836)(O4,9:
836–864)(O3,9: 864–937)(O5,8: 937–977)(O10,10: 977–1057)(O9,10:
1057–1132)(O7,10: 1132–1179)(O4,11: 1179–1196)(O5,10: 1196–1234)
(O10,13: 1234–1274)(O7,11: 1274–1336)(O8,13: 1336–1372)(O8,14:
1372–1443)(O4,13: 1443–1477)(O3,17: 1477–1545)(O4,14: 1545–1641)
(O10,15: 1645–1713) (O5,16: 1713–1772)(O8,19: 1772–1814)(O9,19:
1814–1830)(O10,17: 1830–1907)(O4,16: 1907–1989)(O3,22: 1989–
2024)(O8,22: 2024–2060)(O3,23: 2060–2133)(O1,15: 2133–2227).

M5: (O9,1: 0–65)(O4,1: 65–143)(O2,2: 143–233)(O7,2: 233–333)
(O5,2: 333–401)(O4,3: 401–466)(O4,4: 466–510)(O6,5: 510–527)
(O4,5: 527–583)(O3,6: 583–654)(O8,6: 654–700)(O10,8: 700–792)
(O7,7: 792–882)(O10,9: 882–914)(O4,10: 914–977)(O2,8: 977–1074)
(O5,9: 1074–1158)(O8,11: 1158–1195)(O3,14: 1195–1290)(O10,14:
1290–1370)(O6,11: 1370–1437)(O5,12: 1437–1500)(O7,13: 1500–1598)
(O1,12: 1598–1627)(O5,14: 1627–1672)(O1,13: 1672–1683)(O8,16:
1683–1722)(O8,17: 1722–1739)(O8,18: 1739–1769)(O2,16: 1769–1817)
(O2,17: 1817–1872)(O3,20: 1872–1900)(O9,20: 1900–1934)(O3,21:
1934–1952)(O9,21: 1952–2051)(O7,17: 2051–2083)(O5,20: 2083–
2181)(O8,24: 2181–2202)(O8,25: 2202–2227).
References

[1] Colorni A, Dorigo M, Maniezzo V, Trubian M. Ant system for job-shop
scheduling. Belgian Journal of Operations Research, Statistics and Computer
Science 1994;34(1):39–53.

[2] Cheng C, Smith S. Applying constraint satisfaction techniques to job shop
scheduling. Annals of Operations Research 1997;70:327–57.

[3] Nowicki E, Smutnicki C. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling 2005;8(2):145–59.

[4] Huang K, Liao C. Ant colony optimization combined with taboo search for the
job shop scheduling problem. Computers & Operations Research 2008;35
(4):1030–46.

[5] Beck J, Feng T, Watson J. Combining constraint programming and local search
for job-shop scheduling. INFORMS Journal on Computing 2011;23(1):1–14.

[6] Qing-dao-er-ji R, Wang Y. A new hybrid genetic algorithm for job shop
scheduling problem. Computers & Operations Research 2012;39(10):2291–9.

[7] Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1976;1:117–29.

[8] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research 1993;41(3):157–83.

[9] Hurink J, Jurisch B, Thole M. Tabu search for the job-shop scheduling problem
with multi-purpose machines. OR Spectrum 1994;15(4):205–15.

[10] Dauzère-Pérès S, Paulli J. An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search.
Annals of Operations Research 1997;70(0):281–306.

[11] Mastrolilli M, Gambardella L. Effective neighbourhood functions for the
flexible job shop problem. Journal of Scheduling 2000;3(1):3–20.

[12] Bozejko W, Uchronski M, Wodecki M. Parallel Meta2heuristics for the Flexible
Job Shop Problem. In: Proceedings of ICAISC 2010, Part II, Lecture notes in
computer science, vol. 6114, p. 395–402.

[13] Pezzella F, Morganti G, Ciaschetti G. A genetic algorithm for the flexible job-
shop scheduling problem. Computers & Operations Research 2008;35
(10):3202–12.

[14] Gao J, Sun L, Gen M. A hybrid genetic and variable neighborhood descent
algorithm for flexible job shop scheduling problems. Computers & Operations
Research 2008;35(9):2892–907.

[15] Bagheri A, Zandieh M, Mahdavi I, Yazdani M. An artificial immune algorithm
for the flexible job-shop scheduling problem. Future Generation Computer
Systems 2010;26(4):533–41.

[16] Xing L, Chen Y, Wang P, Zhao Q, Xiong J. A knowledge-based ant colony
optimization for flexible job shop scheduling problems. Applied Soft Comput-
ing 2010;10(3):888–96.

[17] Wang L, Zhou G, Xu Y, Wang S, Liu M. An effective artificial bee colony
algorithm for the flexible job-shop scheduling problem. International Journal
of Advanced Manufacturing Technology 2012; 60(1-4):303–15.

[18] Moscato P. On evolution, search, optimization, genetic algorithms and martial
arts: towards memetic algorithms. C3P Report 826, California Institute of
Technology; 1989.

[19] Harvey WD. Nonsystematic backtracking search. Ph.D. thesis, CIRL, University
of Oregon; 1995.

[20] Shaw P. Using constraint programming and local search methods to solve
vehicle routing problems. In: CP-98, Fourth international conference on
principles and practice of constraint programming, Lecture notes in computer
science, vol. 1520; 1998. p. 417–31.

[21] Cesta A, Oddi A, Smith S. Iterative flattening: a scalable method for solving
multi-capacity scheduling problems. In: Proceedings of the national confer-
ence on artificial intelligence, 2000. p. 742–7.

[22] Ben Hmida A, Haouari M, Huguet M, Lopez P. Discrepancy search for the
flexible job shop scheduling problem. Computers & Operations Research
2010;37(12):2192–201.

[23] Pacino D, Van Hentenryck P. Large neighborhood search and adaptive
randomized decompositions for flexible jobshop scheduling. In: Proceedings

http://learn.tsinghua.edu.cn:8080/2010210742/NBKS.rar
http://learn.tsinghua.edu.cn:8080/2010210742/NBKS.rar
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref1
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref1
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref1
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref2
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref2
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref3
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref3
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref4
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref4
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref4
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref4
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref5
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref5
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref6
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref6
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref6
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref7
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref7
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref8
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref8
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref9
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref9
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref10
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref10
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref10
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref11
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref11
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref13
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref13
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref13
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref13
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref14
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref14
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref14
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref14
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref15
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref15
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref15
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref16
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref16
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref16
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref22
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref22
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref22
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref22


Y. Yuan, H. Xu / Computers & Operations Research 40 (2013) 2864–2877 2877
of the 22th international joint conference on artificial intelligence, Barcelona,
2011.

[24] Oddi A, Rasconi R, Cesta A, Smith S. Iterative flattening search for the flexible
job shop scheduling problem. In: Proceedings of the 22th international joint
conference on artificial intelligence, Barcelona, 2011.

[25] Geem Z, Kim J, Loganathan G. A new heuristic optimization algorithm:
harmony search. Simulation 2001;76(2):60–8.

[26] Pan Q, Wang L, Gao L. A chaotic harmony search algorithm for the flow shop
scheduling problem with limited buffers. Applied Soft Computing 2011;11
(8):5270–80.

[27] Lee K, Geem Z. A new meta-heuristic algorithm for continuous engineering
optimization: harmony search theory and practice. Computer Methods in
Applied Mechanics and Engineering 2005;194:3902–33.

[28] Tamaki H. A paralleled genetic algorithm based on a neighborhood model and
its application to the jobshop scheduling. Parallel Problem Solving from
Nature 1992;2:573–82.

[29] Cheng R, Gen M, Tsujimura Y. A tutorial survey of job-shop scheduling
problems using genetic algorithms—I. Representation. Computers & Industrial
Engineering 1996;30(4):983–97.

[30] Wang L, Pan Q, Fatih Tasgetiren M. Minimizing the total flow time in a flow
shop with blocking by using hybrid harmony search algorithms. Expert
Systems with Applications 2010;37(12):7929–36.
View publication statsView publication stats
[31] Carchrae T, Beck J. Principles for the design of large neighborhood search.
Journal of Mathematical Modelling and Algorithms 2009;8(3):245–70.

[32] Michel L, Van Hentenryck P. A constraint-based architecture for local search.
In: Conference on object-oriented programming systems, languages, and
applications, Seattle, November 2002. p. 101–10.

[33] Comet Tutorial. URL: 〈http://www.lsi.upc.edu/� larrosa/comet.pdf〉; 2010.
[34] Godard D, Laborie P, Nuijten W. Randomized large neighborhood search for

cumulative scheduling. In: Proceedings of the 15th international conference
on automated planning & scheduling, 2005. p. 81–9.

[35] Barnes JW, Chambers JB. Flexible Job Shop Scheduling by tabu search.
Graduate program in operations research and industrial engineering. The
University of Texas at Austin, Technical Report Series, ORP96-09; 1996.

[36] Mastrolilli M, Gambardella L. Effective neighbourhood functions for the
flexible job shop problem: Appendix, Technical Report, IDSIA-Istituto Dalle
Intelligenza Artificiale. Electronic version available at: 〈http://www.idsia.ch/
�monaldo/fjsp.html〉; 2000.

[37] Dongarra J. Performance of various computers using standard linear equations
software. Computer Science Department, University of Tennessee, Knoxville,
Tennessee; 2009.

[38] Jain S, Van Hentenryck P. Large neighborhood search for dial-a-ride problems.
In: CP-2011, 17th international conference on principles and practice of
constraint programming, Lecture notes in computer science, vol. 6876; 2011.
p. 400–13.

http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref25
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref25
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref26
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref26
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref26
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref27
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref27
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref27
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref28
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref28
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref28
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref29
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref29
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref29
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref29
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref30
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref30
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref30
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref31
http://refhub.elsevier.com/S0305-0548(13)00167-6/sbref31
http://www.lsi.upc.edu/~larrosa/comet.pdf
http://www.lsi.upc.edu/~larrosa/comet.pdf
http://www.idsia.ch/~monaldo/fjsp.html
http://www.idsia.ch/~monaldo/fjsp.html
https://www.researchgate.net/publication/262154413

	An integrated search heuristic for large-scale flexible job shop scheduling problems
	Introduction
	Problem formulation
	Hybrid harmony search
	Outline of HS
	Procedure of HHS
	Adaptation of HHS to the FJSP
	Representation and initialization
	Two-vector code
	Conversion techniques
	Local search strategy


	Large neighborhood search
	Outline of LNS
	Constraint-based model for the FJSP
	Destruction procedure
	Construction procedure

	Integrated search heuristic: HHS/LNS
	Experimental study
	Experimental setup
	Performance analysis of the HHS module
	Performance analysis of the LNS module
	Effects of integration
	Computational results on large-scale benchmark instances

	Conclusion and future work
	Acknowledgment
	References




