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This paper proposes hybrid differential evolution (HDE) algorithms for solving the flexible job shop
scheduling problem (FJSP) with the criterion to minimize the makespan. Firstly, a novel conversion mech-
anism is developed to make the differential evolution (DE) algorithm that works on the continuous
domain adaptive to explore the problem space of the discrete FJSP. Secondly, a local search algorithm
based on the critical path is embedded in the DE framework to balance the exploration and exploitation
by enhancing the local searching ability. In addition, in the local search phase, the speed-up method to
find an acceptable schedule within the neighborhood structure is presented to improve the efficiency
of whole algorithms. Extensive computational results and comparisons show that the proposed algo-
rithms are very competitive with the state of the art, some new best known solutions for well known
benchmark instances have even been found.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The job shop scheduling problem (JSP) is one of most impor-
tant and difficult problems in the field of production scheduling.
The flexible job shop scheduling problem (FJSP) is an extension
of the classical JSP, in which operations are allowed to be pro-
cessed by any machine from a given set, rather than one specified
machine. Generally, the FJSP is much closer to a real production
environment and has more practical applicability. However, the
FJSP is more complex than the JSP because of its additional deci-
sion to assign each operation to the appropriate machine (rout-
ing) besides sequencing operations on machines. It has been
proved that the FJSP is strongly NP-hard even if each job has at
most three operations and there are two machines (Garey et al.,
1976).

Although exact algorithms based on a disjunctive graph repre-
sentation of the problem have been developed, but they are not
applicable for instances with more than 20 jobs and 10 machines
(Pinedo, 2002). So, metaheuristics for the FJSP, which aim to find
the near-optimal schedule with acceptable computational time,
have gained increasing attention in the past decades. Among them,
tabu search (TS), genetic algorithm (GA), particle swarm optimiza-
tion (PSO) were most frequently adopted to solve the FJSP.

As for TS, Brandimarte (1993) proposed a hybrid TS heuristic
with some known dispatching rules to solve the FJSP. Hurink
et al. (1994) presented a TS procedure in which routing and
sequencing are regarded as two different types of moves. Dau-
zère-Pérès and Paulli (1997) also developed a TS algorithm based
on a new neighborhood structure that makes no distinction be-
tween routing and sequencing. Mastrolilli and Gambardella
(2000) further improved their TS techniques and proposed two
neighborhood functions for the FJSP. Recently, Bo _zejko et al.
(2010) dealt with the FJSP by using a parallel TS based meta2heu-
ristics which treats routing and sequencing separately. Li et al.
(2011) developed a hybrid TS with an efficient neighborhood struc-
ture for the FJSP.

As for GA, Chen et al. (1999) pronounced an effective GA to
solve the FJSP. In their method, the chromosome representation
is divided into two parts, the first one denotes a concrete allocation
of operations to each machine and the second one describes the se-
quence of operations on each machine. Kacem et al. (2002a) devel-
oped a GA for the FJSP controlled by the assigned model which is
generated by the approach of localization. Jia et al. (2003) proposed
a modified GA which is able to solve distribute scheduling prob-
lems and the FJSP. Pezzella et al. (2008) presented a GA in which
a mix of different strategies for generating the initial population,
selecting the individuals for reproduction, and reproducing new
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Table 1
Processing time table of an instance of FJSP.

Job Operation M1 M2 M3

J1 O1,1 2 – 3
O1,2 4 1 3

J2 O2,1 – 5 3
O2,2 6 2 4
O2,3 3 – –

J3 O3,1 4 5 2
O3,2 3 – 2
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individuals are integrated. Gao et al. (2008) combined GA with var-
iable neighborhood descent (VND) procedure for solving the FJSP
with three objectives.

As for PSO, Xia and Wu (2005) made use of PSO to assign oper-
ations on machines and simulated annealing (SA) algorithm to se-
quence operations on each machine. Zhang et al. (2009)
combined a PSO algorithm with a TS procedure for solving the FJSP.
Moslehi and Mahnam (2011) studied the FJSP with an integrated
multi-objective approach based on hybridization of PSO and local
search. All the three works mentioned above mainly considered
the multi-objective FJSP. Their experimental results demonstrate
the effectiveness of the PSO.

In addition, a growing number of studies for the FJSP have con-
cerned other metaheuristics during most recent years. Bagheri et al.
(2010) presented an artificial immune algorithm (AIA) using some
resultful rules. Yazdani et al. (2010) proposed a parallel variable
neighborhood search (PVNS) algorithm based on the application
of multiple independent searches. Xing et al. (2010) developed a
knowledge-based ant colony optimization (KBACO) algorithm that
provides an effective integration between the ant colony optimiza-
tion (ACO) model and the knowledge model. Wang et al. (2011)
and Wang et al. (2012) applied the artificial bee colony (ABC)
algorithm and estimation of distribution algorithm (EDA) to the
FJSP, both of which stress the balance between global exploration
and local exploitation. It is also worth noting that metaheuristics
based on constraint programming (CP) techniques have gradu-
ally shown great potential in solving the FJSP. The discrepancy
search (DS), large neighborhood search (LNS) and iterative
flattening search (IFS) have been well tested on the FJSP and
achieved the excellent performance on some standard benchmarks
(Ben Hmida et al., 2010; Oddi et al., 2011; Pacino and Hentenryck,
2011).

The differential evolution (DE) algorithm proposed by Storn and
Price (1997) is one of the latest population-based evolutionary
metaheuristics, which was originally devised for solving continu-
ous optimization problems. As a stochastic real-parameter global
optimizer, the DE employs simple mutation and crossover opera-
tors to generate new candidate solutions, and applies one-to-one
competition scheme to greedily determine whether the new candi-
date or its parent will survive in the next generation. Due to its
simplicity, ease of implementation, fast convergence, and robust-
ness, the DE algorithm has captured much attention and gained a
wide range of successful applications such as digital filter design
(Storn, 1999), feed-forward neural networks training (Ilonen
et al., 2003; Zhu et al., 2005), economic load dispatch in power sys-
tems (Noman and Iba, 2008), and traveling salesman problem (Fa-
tih Tasgetiren et al., 2010). However, because of its continuous
nature, the study on DE for scheduling problems is still consider-
ably limited (Damak et al., 2009; Kazemipoor et al., 2012; Onwub-
olu and Davendra, 2006; Qian et al., 2008; Qian et al., 2009). And,
as far as we are aware, there is no published research work that de-
scribes the using of DE to deal with the FJSP. In this paper, we will
propose hybrid differential evolution (HDE) algorithms for solving
the FJSP with the criterion to minimize the makespan. In particular,
a novel conversion mechanism is developed to make the continu-
ous DE applicable for solving the discrete FJSP. To achieve a balance
between the global exploration and local exploitation of the
search space, a local search procedure based on the critical path
is embedded into the global search based DE. Besides, in the local
search phase, two neighborhood structures are presented, and the
speed-up method is also developed to find an acceptable schedule
in the neighborhood more quickly. Based on the two neighborhood
structures, two variants of HDE algorithms are formed, HDE-N1 and
HDE-N2. Experimental studies demonstrate the effectiveness and
efficiency of the proposed algorithms in comparison with the state
of the art.
The remainder of this paper is organized as follows. In Section 2,
the FJSP is formulated and an illustrative problem instance is given.
In Section 3, the basic DE algorithm is introduced. In Section 4, the
proposed HDE algorithms for the FJSP are illustrated in detail. The
extensive computational results and comparisons are provided in
Section 5. Finally, we end the paper with some conclusions in
Section 6.
2. Problem formulation

The FJSP is formally formulated as the following. There are a set
of n independent jobs J = {J1, J2, . . . , Jn} and a set of m machines
M = {M1,M2, . . . ,Mm}. A job Ji is formed by a sequence of ni opera-
tions {Oi,1,Oi,2, . . . ,Oi;ni

} to be performed one after another according
to the given sequence. Each operation Oi,j, i.e the jth operation of
job Ji, must be executed on one machine chosen from a given sub-
set Mi,j # M. The processing time of the operation is machine
dependent. pi,j,k is denoted to be the processing time of Oi,j on ma-
chine Mk. The scheduling consists of two subproblems: the routing
subproblem that assigns each operation to an appropriate machine
and the sequencing subproblem that determines a sequence of
operations on all the machines. The objective is to find a schedule
that minimize the makespan. The makespan means the time
needed to complete all the jobs and can be defined as Cmax =
max16i6n(Ci), where Ci is the completion time of job Ji.

Moreover, the following assumptions are made in this study: all
the machines are available at time 0; all the jobs are released at
time 0; each machine can process only one operation at a time;
each operation must be completed without interruption once it
starts; the order of operations for each job is predefined and cannot
be modified; the setting up time of machines and transfer time of
operations are negligible.

For illustrating explicitly, a sample instance of FJSP is shown in
Table 1, where rows correspond to operations and columns corre-
spond to machines. Each entry of the input table denotes the pro-
cessing time of that operation on the corresponding machine. In
this table, the tag ‘‘–’’ means that a machine cannot execute the
corresponding operation.
3. Basic DE algorithm

The DE algorithm (Storn and Price, 1997) is a population-based
evolutionary algorithm, utilizing NP real-valued parameter vectors
as a population for each generation G. Each vector, also known as
chromosome, forms a candidate solution to the optimization prob-
lem, which is generally defined as minimizing (or maximizing)

f ðX!Þ, such that xj 2 [xj,min, xj,max], where f ðX!Þ is the objective func-

tion (or fitness function), X
!¼ ½x1; x2; . . . ; xD�T is a vector consisting

of D dimensional decision variables, and xj,min and xj,max are the
lower and upper bounds for each decision variable, respectively.
The basic DE works through a simple cycle of stages to do the task
of optimization until the termination criterion (i.e. maximum
number of generations, or maximum computation time) is
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satisfied, just as presented in Fig. 1. The details of each stage are
described as follows.

3.1. Initialization

The initialization of the basic DE aims to set the control param-
eters and the initial population of vectors. The parameters include
the size of the population (NP), the mutation scale factor (F), and
the crossover probability (Cr). It is obvious that a good set of
parameters can enhance the ability of the algorithm to search for
the global optimum or near optimum region with a high conver-
gence rate.

Let us denote the subsequent generations in DE by
G = 0,1, . . . ,Gmax. The ith vector of the population at the current
generation is represented as the following:

X
!

i;G ¼ ½x1;i;G; x2;i;G; . . . ; xD;i;G�T ð1Þ

The initial population (G = 0) of vectors are usually generated ran-
domly which could cover the constrained search space as much as
possible. Thus, the jth component of the ith vector may be initial-
ized as

xj;i;0 ¼ xj;min þ ðxj;max � xj;minÞ � randð0;1Þ ð2Þ

where rand(0,1) is a random function returning a real number be-
tween 0 and 1 with uniform distribution.

3.2. Mutation

The mutation can be seen as a perturbation to the individual
during the evolutionary process. In the basic DE, a parent vector
from the current generation is called target vector, the
mutation operator is to construct a mutant vector
Vi;G ¼ ½v1;i;G;v2;i;G; . . . ;vD;i;G�T , which is known as donor vector, corre-
sponding to the ith target vector Xi,G. As known, there exist several
different mutation schemes of the DE algorithm. In this paper, the
scheme DE/best/1 is followed, which is illustrated as

V
!

i;G ¼ X
!

best;G þ F � X
!

ri
1
;G � X
!

ri
2
;G

� �
ð3Þ

Xbest,G is the vector with the best fitness (i.e. lowest objective func-
tion value for a minimization problem) in the population at gener-
ation G. The indices ri

1 and ri
2 are two distinct integers randomly

chosen in the range [1,NP], and both are different from the base in-
dex i. The scale factor F is a constant real number within the range
[0,2], usually less than 1.

From the above description, the mutation in DE is quite differ-
ent from its counterpart in traditional GA. Instead of small altera-
tions of genes in GA mutation, the DE mutation is performed by
means of combinations of individuals (Panduro et al., 2009).
Fig. 1. Main stages of the
3.3. Crossover

The crossover represents as a typical case of the information ex-
change between the individuals. In the basic DE, the crossover
operator is to generate a vector Ui;G ¼ ½u1;i;G;u2;i;G; . . . ;uD;i;G�T , called
trial vector, for the ith target vector X

!
i;G through combing compo-

nents from X
!

i;G and its corresponding donor vector V
!

i;G. The gen-
eration of a trial vector is outlined as the following equation:

uj;i;G ¼
v j;i;G; if randð0;1Þ 6 Cr or j ¼ q

xj;i;G; otherwise

�
ð4Þ

q is a randomly chosen integer within the range [1,D], which guar-
antees that the Ui,G gets at least one component from Vi,G. The cross-
over probability Cr is a constant real number taken from the interval
[0,1].

3.4. Selection

The selection operator is to decide whether or not the trial vec-
tor Ui,G is the member of the population for the next generation,
which can be described as

X
!

i;Gþ1 ¼
U
!

i;G; if f ðU!i;GÞ 6 f ðX!i;GÞ

X
!

i;G; otherwise

(
ð5Þ

where f ðX!Þ is the objective function to be minimized. Therefore, for
the minimization problem, the new trial vector will replace the cor-
responding target vector in the next generation if its objective func-
tion value is not greater than that of the target vector; otherwise,
the target is retained in the population.

4. Proposed HDE for the FJSP

4.1. Overview of the HDE

The framework of the proposed HDE is based on the basic DE
and its algorithmic flow is depicted as follows:

Step 1: Set the size of the population (NP), scale factor (F), cross-
over probability (Cr), maximum number of generations
(Gmax), probability of carrying out local search (Pl), and
maximum local iterations (itermax).

Step 2: Set G = 0 and initialize the population.
Step 3: Evaluate each chromosome and label the X

!
best;G.

Step 4: Mutation phase. Generate NP donor vectors
V
!

i;G; i ¼ 1;2; . . . ;NP, by using the mutation operator
described in Eq. (3).

Step 5: Crossover phase. Generate NP trial vectors
U
!

i;G; i ¼ 1;2; . . . ;NP, according to the crossover operator
illustrated in Eq. (4).
basic DE algorithm.
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Step 6: For each trial vector U
!

i;G, sample rn 2 U(0,1), if rn < Pl, per-
form the local search to the U

!
i;G; otherwise evaluate it

directly.
Step 7: Selection phase. Determine NP target vectors

X
!

i;Gþ1; i ¼ 1;2; . . . ;NP, by one-to-one selection operator
described in Eq. (5) for the next generation. Set G = G + 1.

Step 8: Update the X
!

best;G.
Step 9: If G < Gmax, then go to Step 4; otherwise stop the procedure

and return the X
!

best;G.

As can be seen, the maximum number of generations is adopted
as the termination criterion. Unlike the basic DE, the HDE not only
employs the DE based evolutionary searching mechanism to effec-
tively perform the exploration for promising solutions within the
entire region, but it also employs the well developed local search
algorithm to perform the exploitation for local improvement of
solutions. In the HDE, the local search is applied to the trial vector
U
!

i;G but not the target vector X
!

i;G, which is beneficial to avoid both
cycling search and getting trapped in a local optimum. Moreover,
the frequency and intensity of the local search are controlled by
the parameters Pl and itermax, respectively.

The implementation of the proposed HDE for the FJSP concerns
two crucial issues. One is the evaluation of a chromosome, the
other is how to apply the local search to a chromosome.

To evaluate a chromosome (represented by real-parameter vec-
tor, see Section 4.2), it is firstly converted to a kind of discrete two-
vector code (see Section 4.3), called forward conversion (see Sec-
tion 4.4.1) in this paper, then the two-vector code is decoded to
an active schedule (Pinedo, 2002). The fitness of the chromosome
is given as the value of makespan for this schedule, just as depicted
in Fig. 2. The optimal schedule is always within the set of active
schedules for the problems to minimize the makespan, so only
the active schedule is considered here to correspond to a chromo-
some, which could largely reduce the search space.

As for the local search to a chromosome, its computational flow
is depicted in Fig. 3. In fact, the local search algorithm is not di-
rectly applied to a chromosome, but to the schedule corresponding
to the chromosome, which is helpful for introducing the problem-
specific knowledge. So the operator of evaluation is firstly adopted
to obtain the schedule, then the schedule is further improved by
the local search (see Section 4.5). After that, the improved schedule
is encoded to a two-vector code, which is then converted to a chro-
mosome by using backward conversion (see Section 4.4.2). The
Fig. 2. The computational flow of the evaluation.

Fig. 3. The computational flow of th
obtained improved chromosome enters into the evolutionary pro-
cess in replace of the original one.

In the following subsections, we will detail the implementation
of the proposed HDE for the FJSP. Section 4.2 introduces the repre-
sentation of the chromosome and the initialization of the popula-
tion. In Section 4.3, the two-vector code will be illustrated
including its encoding and decoding method. In Section 4.4, the
conversion techniques, forward conversion and backward conver-
sion, are presented. The proposed local search is described in
Section 4.5.

4.2. Representation and initialization

In the proposed HDE algorithms, a chromosome

X
!¼ ½x1; x2; . . . ; xD�T , is still represented as an D-dimensional real-
parameter vector. But the dimension D should satisfy the con-
straint D = 2d, where d is the total number of operations in the FJSP
to solve. To denote the two-level decision making (routing and

sequencing) of the FJSP respectively, the chromosome X
!

is divided

into two separate parts. The first half part, X
!ð1Þ ¼ ½x1; x2; . . . ; xd�T ,

describes the information of machine assignment for each opera-

tion, while the last half part, X
!ð2Þ ¼ ½xdþ1; xdþ2; . . . ; x2d�T , presents

the information of operations sequencing on all the machines.
What’s more, to deal with the problem conveniently, the ranges
[xj,min,xj,max], j = 1,2, . . . ,D for decision variables are all set as
[�d,d], d > 0, where d is referred as bound factor in our proposed
algorithms.

The population of the proposed HDE is also initialized randomly
and uniformly just as the basic DE. A chromosome in the HDE can
be produced randomly according to Eq. (2), where xj,min = �d,
xj,max = d, j = 1,2, . . . ,D.

4.3. Two-vector code

The two-vector code consists of two vectors: machine assign-
ment vector and operation sequence vector, corresponding well
to two subproblems in the FJSP.

For explaining the two vectors, a fixed ID for each operation is
first given in accordance with the job number and operation order
within the job. This numbering scheme is illustrated in Table 2 for
the instance shown in Table 1. After numbered, the operation can
also be referred to by the fixed ID, for example, operation 5 has
the same reference with the operation O2,3 as shown in Table 2.

4.3.1. Machine assignment vector
The machine assignment vector, represented by

R
!¼ ½r1; r2; . . . ; rd�T , is an array of d integer values. In the vector,
rj, j = 1,2, . . . ,d, denotes the operation j chooses the rjth machine
in its alternative machine set. In Fig. 4, a possible machine assign-
ment vector for the problem in Table 1 is shown and its meaning is
e local search to a chromosome.



Table 2
Illustration of numbering scheme for operations.

Operation indicated O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O3,2

Fixed ID 1 2 3 4 5 6 7
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also revealed. For example, r7 = 2 indicates that the operation O3,2

selects the 2nd machine in its alternative machine set, that is ma-
chine M3 where the corresponding square is shadowed.

4.3.2. Operation sequence vector
The operation sequence vector, expressed as S

!
¼ ½s1; s2; . . . ; sd�T ,

is the ID permutation of all the operations. The order of occurrence
for each operation in the S

!
indicates its scheduling priority. Take

the instance shown in Table 1 for example, a possible operation se-
quence vector is represented as S

!
¼ ½3;6;4;7;1;5;2�T . The vector

S
!

can be directly translated into a unique list of ordered opera-
tions: O2,1 � O3,1 � O2,2 � O3,2 � O1,1 � O2,3 � O1,2. Operation O2,1

has the highest priority and is scheduled first, then the operation
O3,1, and so on. It must be noted that not all the ID permutations
are feasible for the operation sequence vector because of the des-
ignated priority of operations lying in a job. That is to say, the oper-
ations within a job should keep the relative priority order in the S

!
.

4.3.3. Encoding and decoding
To encode a schedule of the FJSP to the two-vector code is sim-

ple and direct, the vector R
!

is obtained just by the machine assign-
ment in the schedule, while the vector S

!
is got through sorting all

the operations in the non-decreasing order of the earliest start
time.

The decoding of the two-vector code is divided into two steps.
The first step is to assign each operation to the selected machine
according to the R

!
. Then the second is to treat all the operations

one by one according to their order in the S
!

, each operation under
treatment is allocated in the best available processing time for the
corresponding machine. A schedule generated by this way can be
ensured to be an active schedule (Cheng et al., 1996).

4.4. Conversion techniques

4.4.1. Forward conversion
The forward conversion is to convert a chromosome represented

by the real-parameter vector X
!¼ ½x1; x2; . . . ; xd; xdþ1; xdþ2; . . . ; x2d�T

to a two-vector code consisting of two integer-parameter vectors

R
!¼ ½r1; r2; . . . ; rd�T and S

!¼ ½s1; s2; . . . ; sd�T . This kind of conversion
is divided into two separate parts.

For the conversion in the first part, the vector

X
!ð1Þ ¼ ½x1; x2; . . . ; xd�T is converted to the machine assignment vec-

tor R
!¼ ½r1; r2; . . . ; rd�T . Let L

!¼ ½l1; l2; . . . ; ld�T , where lj,j = 1,2, . . . ,d,
denotes the size of alternative machine set for operation j. What
Fig. 4. Illustration of the mac
we need is to map the real number xj 2 [�d,d] to the integer rj 2
[1, lj]. The concrete procedure is: firstly convert xj to a real number
within the range [1, lj] by linear transformation, then rj is given
the nearest integer value for the converted real number, which is
described as Eq. (6).

rj ¼ round
1

2d
ðlj � 1Þðxj þ dÞ þ 1

� �
; j ¼ 1;2; . . . ; d ð6Þ

where round(x) is the function that rounds the number x to the
nearest integer. In the particular case lj = 1, rj always equals to 1
no matter what value of xj is.

In the second part, X
!ð2Þ ¼ ½xdþ1; xdþ2; . . . ; x2d�T is converted to the

operation sequence vector S
!¼ ½s1; s2; . . . ; sd�T . To realize this con-

version, the largest position value (LPV) rule (Wang et al., 2010)
is first employed to construct an ID permutation of operations by
ordering the operations in their non-increasing position value.
However, as mentioned in Section 4.3.2, the obtained permutation

may be not feasible for the S
!

. So, the repair procedure illustrated
in Algorithm 1 is further carried out to adjust the relative order of
operations within a job in the permutation.

Algorithm 1. RepairPermutation ( S
!

)

1: Set Q
!
¼ ½q1; q2; . . . ; qn�

T

2: [q1,q2, . . . ,qn]T [0,0, . . . ,0]T

3: for i = 1 to d do
4: Get the job Jk that the operation si belongs to
5: qk qk + 1
6: Get the fixed ID op for the operation Ok;qk

7: si op
8: end for

Suppose that we have a vector X
!ð2Þ ¼ ½0:6;�0:5; 0:4;�0:1;

0:8;0:2;�0:3�T for the instance shown in Table 1, then an example
of conversion is illustrated in Fig. 5.
4.4.2. Backward conversion
The backward conversion is to convert a two-vector code con-

taining the vectors R
!¼ ½r1; r2; . . . ; rd�T and S

!¼ ½s1; s2; . . . ; sd�T to a
chromosome X

!¼ ½x1; x2; . . . ; xd; xdþ1; xdþ2; . . . ; x2d�T , which occurs
after the local improvement to the schedule as described in
Fig. 3. This type of conversion also consists of two separated parts
just like the forward conversion.

In the first part related to machine assignment, the vector

R
!¼ ½r1; r2; . . . ; rd�T is converted to the vector X

!ð1Þ ¼ ½x1; x2; . . . ; xd�T ,
the conversion is in fact an inverse linear transformation of Eq. (6).
But the case of lj = 1 should be considered alone, lj chooses a random
hine assignment vector.



Fig. 5. The conversion from X
!ð2Þ to the operation sequence vector S

!
.
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value in the range [�d,d] when lj = 1. This transformation can be per-
formed as follows
xj ¼
2d

lj�1 ðrj � 1Þ � d; lj – 1

xj 2 ½�d; d�; lj ¼ 1

(
ð7Þ
where j = 1,2, . . . ,d.
For the second part, the vector X

!ð2Þ ¼ ½xdþ1; xdþ2; . . . ; x2d�T , is ob-
tained by rearranging elements in the original X

!ð2Þ before local im-
proved. The rearrangement makes the yielded new X

!ð2Þ
correspond to the S

!
of the improved schedule according to the

LPV rule. Take the problem shown in Table 1 for instance, a possi-
ble conversion is depicted in Fig. 6.
4.5. Local search algorithm

In this subsection, how to apply the local search to improve a
schedule will be illustrated in detail. Firstly, the disjunctive graph,
a kind of representation for the schedule, is introduced. Then,
two neighborhood structures N1 and N2 based on the critical path
in the disjunctive graph are presented. Finally, we summarize the
procedure of local search.
Fig. 6. The conversion from the operati
4.5.1. Disjunctive graph
A schedule of the FJSP can be represented by the disjunctive

graph G = (V,C
S

D). In the graph, V denotes a set of all the nodes,
each node represents an operation in the FJSP (including dummy
starting and terminating operations); C is the set of all the con-
junctive arcs, these arcs connect two adjacent operations within
one job and the directions of them represent the processing order
between two connected operations; D means a set of all the dis-
junctive arcs, these arcs connect two adjacent operations per-
formed on the same machine and their directions also show the
processing order. The processing time for each operation is gener-
ally labeled above the corresponding node and regarded as the
weight of the node. For example, a possible schedule represented
by the disjunctive graph for the problem shown in Table 1 is
illustrated in Fig. 7, in which O3,1, O1,1, O2,3 are processed in suc-
cession on the machine M1, O2,1, O1,2 are executed successively on
the machine M2, and O3,2, O2,2 are performed in turn on the ma-
chine M3.

A schedule of the FJSP is feasible, if and only if there exist no
cyclic paths in its corresponding disjunctive graph. If a disjunctive
graph is acyclic, then the longest path from the starting node S to
the ending node E is called critical path, whose length defines
the makespan for the schedule. Operations on the critical path
are known as critical operations. For example, the disjunctive
graph illustrated in Fig. 7 is acyclic, so it is a feasible schedule;
on sequence vector S
!

to the X
!ð2Þ .



Fig. 7. Illustration of the disjunctive graph.
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its critical path is S ? O3,1 ? O3, 2 ? O2,2 ? O2,3 ? E and the make-
span equals to 13; the operations O3,1, O3,2, O2,2 and O2,3 are all crit-
ical operations.
4.5.2. Neighborhood structures
Since the makespan is no shorter than any other path in the dis-

junctive graph, the makespan may be only improved by moving
critical operations. In the disjunctive graph, to move an operation
Oi,j is performed in two steps consisting of deletion and insertion
(Mastrolilli and Gambardella, 2000):

Step 1: Delete the node v representing Oi,j from its current
machine sequence by removing all its disjunctive arcs in
the disjunctive graph. Set the weight of node v equal to 0.

Step 2: Assign Oi,j to an machine Mk and choose the position of v in
the processing order of Mk, insert the node v by adding its
disjunctive arcs and setting the weight of node v equal to
pi,j,k.

Let G be the current schedule, a critical path in G is represented
by S ? co1 ? co2 � � �? cow ? E. The neighborhood structure N1(G)
is defined as the set of schedules (including infeasible schedules)
obtained by moving one critical operation cox, x = 1,2, . . . ,w. Denote
uk is the number of operations processed on Mk in the schedule G,
then the size of N1(G) can be calculated as

Utotal ¼ w �
Xm

k¼1

ðuk þ 1Þ � 1

 !
¼ w �

Xm

k¼1

uk þm� 1

 !

¼ w � ðdþm� 1Þ ð8Þ

Our local search algorithm is to continually choose an accept-
able schedule G0 from the set of N1(G) and set G0 as the new current
schedule. A schedule G0 2 N1(G) is acceptable in the proposed local
search if it satisfies G0 is acyclic and Cmax(G0) 6 Cmax(G). Obviously,
we can form schedules in the neighborhood structure orderly until
an acceptable one is found. But it is very time consuming because
we must check whether it is cyclic and recalculate its makespan for
each formed schedule. Here, the speed-up method will be devel-
oped to find an acceptable schedule in N1(G) more quickly.

Denote ESG(Oi,j) as the earliest start time of operation Oi,j in the
schedule G and LSG(Oi,j) as the latest start time without delaying
the makespan. Hence, the earliest completion time of Oi,j is
ECG(Oi,j) = ESG(Oi,j) + pi,j,k, and the latest completion time LCG(Oi,j) =
LSG(Oi,j) + pi,j,k, where Oi,j is processed on machine Mk. Let PM(Oi,j)
be the operation processed on the same machine right before Oi,j

and SM(Oi,j) be the operation processed on the same machine right
after Oi,j. Let PJ(Oi,j) = Oi,j�1 be the operation that precedes Oi,j with-
in the job Ji and SJ(Oi,j) = Oi,j+1 be the operation of job Ji that follows
Oi,j. Let cox is the critical operation to be moved, G� is the schedule
obtained after deleting the operation cox in G. We take Cmax(G) as
the ‘‘required’’ makespan and calculate the latest start time
LSG� ðOi;jÞ for each operation Oi,j in G� according to this makespan.

If cox is inserted before Oi,j on machine Mk in G� to get a sche-
dule G0 that satisfies Cmax(G0) 6 Cmax(G), it should be started as
early as ECG� ðPMðOi;jÞÞ, and can be completed as late as LSG� ðOi;jÞ
without delaying Cmax(G). Besides, cox must follow the precedence
constraints within the same job. So, if the position before Oi,j is said
to be available for cox to insert into, the following equation should
be met

maxfECG� ðPMðOi;jÞÞ; ECG� ðPJðcoxÞÞg þ pcox ;k

< minfLSG� ðOi;jÞ; LSG� ðSJðcoxÞÞg ð9Þ

In Eq. (9), the ‘‘<’’ not the ‘‘6’’ is used because this can guarantee cox

is not the critical operation in G0 and avoid cyclic search as much as
possible.

Unfortunately, to insert cx before Oi,j under Eq. (9) is satisfied
cannot ensure the yielded G0 is acyclic. Let Hk be the set of opera-
tions processed by machine Mk in G� and ordered by increasing
earliest start time (note that cox R Hk). Let Uk and Wk denote two
subsequences of Hk defined as follows:

Uk ¼ fv 2 HkjESGðvÞ þ pv;k > ESG� ðcoxÞg ð10Þ
Wk ¼ fv 2 HkjLSGðvÞ < LSG� ðcoxÞg ð11Þ

Denote �k is the set of positions before all the operations of UknWk

and after all the operations of WknUk. Then the following theorem is
established

Theory 1. The schedule obtained by inserting the operation cox into a
position c 2 �k is always feasible, and there exists a position in the set
�k that is the optimal one for cox to insert into on machine Mk.

The detail proof of this theory can be referred in Mastrolilli and
Gambardella (2000). According to Theory 1, we have the direct cor-
ollary as follows.

Corollary 1. If an acceptable schedule can be obtained by inserting
cox into a position on machine Mk, then there always exists an
acceptable schedule that is yielded by inserting cox into a position in
the set �k.

So, when we want to find a position for cox to insert into on ma-
chine Mk, only the positions in �k are considered, and if the posi-
tion met Eq. (9), an acceptable schedule is got immediately by
inserting cox into it. The detail procedure of getting an acceptable
schedule from the neighborhood structure N1 is described in
Algorithm 2.

Algorithm 2. GetAcceptableSchedule–I (G)

1: Get a critical path S ? co1 ? co2 � � �?cow ? E in G
2: for x = 1 to w do
3: Delete the operation cox from G to get G�

4: for k = 1 to m do
5: Get the set of positions �k on the machine Mk

6: for each position c 2 �k do
7: if c satisfies Eq. (9) then
8: Insert cox into the position c to get the schedule G0
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9: return G0

10: end if
11: end for
12: end for
13: end for
14: return a null schedule

To make a more intensive search, the neighborhood structure
N2(G) is also defined. It not only includes the schedules obtained
by moving one critical operation in a critical path in G, but also in-
cludes the schedules through moving two operations, at least one
of which is critical. Obviously, N2(G) is much larger than N1(G), and
N1(G) � N2(G). Our method to get an acceptable schedule from the
neighborhood structure N2 is depicted in Algorithm 3.
Algorithm 3. GetAcceptableSchedule-II (G)
1. G0  GetAcceptableSchedule-I (G)
2. if G0 is not a null schedule then
3. return G0

4. end if
5: for each critical operation cox on a critical path in G then
6. Delete the operation cox from G to get G�

7. for each operation o in G� do
8. Delete the operation o from G� to get G�

0

9. if a suitable position c in G�
0

is found for cox to insert
into then

10. Insert cox into c to get G�
00

11. if a suitable position c0 in G�
00

is found for o to insert
into then

12. Insert o into c0 to get G0

13. return G0

14. end if
15. end if
16. end for
17. end for
18. return a null schedule

From Algorithm 3, it can be seen that moving two operations is
only executed when failing to move one operation, because it is
much more time consuming. In other word, we prefer to choose
an acceptable schedule from N1, the schedules in N2nN1 are consid-
ered only when there is no acceptable one in N1. The ‘‘suitable po-
sition’’ in step 9 and 11 means that to insert the operation into this
position cannot delay Cmax(G) which could be judged like Eq. (9),
and the schedule obtained after insertion should be feasible. Be-
cause Theorem 1 does not hold when two operations are moved,
it is necessary to check whether the obtained graph is cyclic after
inserting an operation. In addition, the set N2nN1 is very large, so
we do not consider all the possible insertions when moving two
operations. In fact, as illustrated in Algorithm 3, for the two oper-
ations cox and o to be moved, once cox has been inserted into a suit-
able position, the other suitable positions for cox will not be tried
no matter whether a suitable position is found for o to insert into.
This is a compromise between the computation cost and optimiza-
tion level.
4.5.3. Procedure of local search
The procedure of local search is given in Algorithm 4. In step 3,

we can also call Algorithm 3 to generate an acceptable schedule in-
stead of calling Algorithm 2. If the embedded local search adopts
Algorithm 2, the corresponding proposed HDE is denoted by
HDE-N1, otherwise the proposed HDE is named as HDE-N2 when
Algorithm 3 is used.

Algorithm 4. LocalSearch (G, itermax)

1. i 0
2. while G is not a null schedule and i < itermax

3. G GetAcceptableSchedule-I (G)
4. i i + 1
5. end while
6. return G
5. Experimental studies

5.1. Experimental setup

The proposed HDE algorithms were implemented in Java lan-
guage on an Intel 2.83 GHz Xeon processor with 15.9 Gb of RAM.
To evaluate the performance of HDE algorithms (HDE-N1 and
HDE-N2), the following four sets of well known benchmark in-
stances in the FJSP literature are considered:

(1) Kacem data: The data set consists of five instances from
Kacem et al. (2002b) with number of jobs ranging from 4
to 15, number of machine ranging from 5 to 10, number of
operations for each job ranging from 2 to 4, and number of
operations for all jobs ranges from 12 to 56.

(2) BRdata: The data set consists of 10 instances from Brandim-
arte (1993), which were generated randomly generated
using a uniform distribution between given limits. The num-
ber of jobs ranges from 10 to 20, number of machines ranges
from 4 to 15, number of operations for each job ranging from
5 to 15, and number of operations for all jobs ranges from 55
to 240.

(3) BCdata: The data set consists of 21 instances from Barnes
and Chambers (1996), which were obtained from three ever
challenging classical JSP instances (mt10, la24, la40) (Fisher
and Thompson, 1963; Lawrence, 1984). The number of jobs
ranges from 10 to 15, number of machines ranges from 11
to 18, number of operations for each job ranging from 10
to 15, and number of operations for all jobs ranges from
100 to 225.

(4) HUdata: The data set consists of 129 instances from Hurink
et al. (1994), which were constructed from three instances
(mt06, mt10, mt20) by Fisher and Thompson (1963) and
40 instances (la01–la40) by Lawrence (1984). Depending
on the average number of alternative machines for each
operation, HUdata was divided into three subsets: Edata,
Rdata, and Vdata. The number of jobs ranges from 6 to 30,
number of machines ranges from 5 to 15, number of opera-
tions for each job ranges from 5 to 15, and number of oper-
ations for all jobs ranges from 36 to 300.

The proposed algorithms run 50 independent times for each in-
stance from Kacem data, BRdata, and BCdata, and only run 10 inde-
pendent times for each instance from HUdata due to the large
number of instances in this data set. The results will involve four
metrics including the best makespan (Best), the average makespan
(AVG), the standard deviation of makespan (SD), and the average
computational time in seconds ( CPUav) obtained by the related
algorithms.

To show the superiority of our HDE algorithms, we compare our
computational results with several most competitive algorithms in
the literature for each data set. The mean relative error (MRE) is
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also introduced to analyze the quality of the solutions. For a given
instance, the relative error is defined as RE = (MK � LB)/LB � 100%,
where MK is the makespan obtained by the reported algorithm and
LB is the best known lower bound. For our analysis, the LB of BRda-
ta and BCdata instances are taken from Mastrolilli and Gambardel-
la (2000), while the LB of HUdata instances are computed by
Jurisch (1992). The LB of Kacem instances are not available.

An issue usually involved in comparative assessment of the
algorithms for the FJSP is to quantify the computational effort.
However, the different computing hardware, programming plat-
forms and coding skills used in each algorithm make this compar-
isons notoriously problematic, and the real computer-independent
CPU time is hard to get. Hence, when concerning this issue in this
paper, we enclose the original name of the CPU, the programming
language, and the original computational time for the correspond-
ing algorithm, which is enough for us to have a roughly under-
standing of the efficiency of referred algorithms. This practice has
been often adopted in the existing research of the JSP (Nasiri and
Kianfar, 2012; Sha and Hsu, 2006; Zhang et al., 2008).

The proposed algorithms HDE-N1 and HDE-N2 adopt the same
parameters in our experiments. The parameter settings for each
data set are summarized in Table 3, which are set in such a way
that a relatively good trade-off between solution quality and com-
putational time can be obtained.
5.2. Results of Kacem instances

The first data set under study is Kacem data. We compare our
HDE-N1 and HDE-N2 with two recently proposed algorithms
including TSPCB of Li et al. (2011) and BEDA of Wang et al.
(2012). The detail results are listed in Table 4. The first column
symbolizes the name for each instance; the second column shows
Table 3
Parameter settings of HDE algorithms.

Parameter Description Kacem
data

BRdata BCdata HUdata

Edata Rdata Vdata

NP Population size 20 30 50 50 50 50
F Mutation scale

factor
0.1 0.1 0.5 0.5 0.1 0.1

Cr Crossover
probability

0.3 0.3 0.1 0.1 0.3 0.3

Gmax Maximum
number of
generations

100 200 700 700 700 700

Pl Probability of
carrying out
local search

0.7 0.7 0.8 0.8 0.8 0.8

itermax Maximum local
iterations

80 80 90 90 120 150

d Bound factor 1.0 1.0 1.0 1.0 1.0 1.0

Table 4
Results of five Kacem instances.

Instance n �m BKS TSPCBa BEDAb

Best AVG CPUav Best AVG SD

Case 1 4 � 5 11 11 11.00 0.05 11 11.00 0.00
Case 2 8 � 8 14 14 14.20 4.68 14 14.00 0.00
Case 3 10 � 7 11 11 11.00 5.21 11 11.00 0.00
Case 4 10 � 10 7 7 7.10 1.72 7 7.00 0.00
Case 5 15 � 10 11 11 11.70 9.82 11 11.00 0.00

a The CPU time on a Pentium IV 1.6 GHz processor in C++.
b The CPU time on an Intel Core i5 3.2 GHz processor in C++.
c The CPU time on an Intel 2.83 GHz Xeon processor in Java.
the size of the instance, in which n stands for the number of jobs
and m represents the number of machines; the third column lists
the best known solution (BKS) ever reported in the literature for
each instance; the remaining columns describe the computational
results of TSPCB, BEDA, HDE-N1 and HDE-N2 respectively, where
the SD values of TSPCB are not available. The bold values in the ta-
ble mean the best results.

It can be seen from Table 4 that BEDA and HDE-N2 are the most
effective among the four algorithms, both of which can consis-
tently obtain the best known solutions for all five instances. As
for the computational effort, HDE-N2 is also safely comparable with
BEDA, considering that the efficiency of Java is much lower than
C++. HDE-N2 shows superiority to solve the instance 15 � 10,
which spends about 2 s and is much more efficient than TSPCB
and BEDA. The proposed HDE-N1 just cannot obtain the best con-
sistently for the instance 15 � 10, but it seems to be the most effi-
cient one among the four related algorithms.

5.3. Results of BRdata instances

The second data set investigated is BRdata. Our algorithms are
still compared with TSPCB and BEDA. The detail results are shown
in Table 5 that bears the same quantities of Table 4.

From Table 5, it can be seen that HDE-N1 is more effective, effi-
ciency and robust than TSPCB and BEDA in solving BRdata in-
stances. In particular, as for the best makespan obtained, HDE-N1

outperforms TSPCB in 5 out of 10 instances, and outperforms BEDA
in 2 out of 10 instances; HDE-N1 outperforms both TSPCB and
BEDA in all 10 instances for the average makespan obtained; the
SD values of HDE-N1 is relative smaller than BEDA in general, so
it shows more robustness; as for the efficiency, the overall average
computational time of HDE-N1 is less than TSPCB and BEDA for
most instances. The results of the MRE also reveal the effectiveness
of HDE-N1. HDE-N1 obtains the MRE of the best makespan which is
equal to 15.58%, while TSPCB and BEDA is 18.66% and 16.07%
respectively. For the MRE of the average makespan obtained,
HDE-N1 generates 16.52%, faced to 18.95% for TSPCB, and 19.24%
for BEDA. Compared with HDE-N1, the proposed HDE-N2 further
improves the best results of three instances (MK05, MK06,
MK10). On the whole, HDE-N2 matches eight best known solutions
and even finds a new best solution for the instance MK06 (im-
proved from 58 to 57). However, it is much more time consuming
than HDE-N1, and also appears to be less efficient than TSPCB and
BEDA.

5.4. Results of BCdata instances

The BCdata is one of the largest data set for the FJSP in the lit-
erature. Recent important work on this data set can be referred
in Bo _zejko et al. (2010) and Oddi et al. (2011). Bo _zejko et al.
(2010) proposed a parallel TS algorithm using a high performance
GPU with 128 processors, which is possible to obtain 6 new best
HDE-N1
c HDE-N2

c

CPUav Best AVG SD CPUav Best AVG SD CPUav

0.01 11 11.00 0.00 0.06 11 11.00 0.00 0.09
0.23 14 14.00 0.00 0.14 14 14.00 0.00 0.31
0.30 11 11.00 0.00 0.19 11 11.00 0.00 0.46
0.42 7 7.00 0.00 0.22 7 7.00 0.00 0.37

14.88 11 11.86 0.35 0.66 11 11.00 0.00 2.19



Table 5
Results of 10 BRdata instances.

Instance n �m BKS TSPCBa BEDAb HDE-N1
c HDE-N2

c

Best AVG CPUav Best AVG SD CPUav Best AVG SD CPUav Best AVG SD CPUav

MK01 10 � 6 40 40 40.30 2.80 40 41.02 0.83 1.09 40 40.00 0.00 1.16 40 40.00 0.00 4.01
MK02 10 � 6 26 26 26.50 19.31 26 27.25 0.67 2.16 26 26.52 0.50 1.48 26 26.00 0.00 6.09
MK03 15 � 8 204 204 204.00 0.98 204 204.00 0.00 2.18 204 204.00 0.00 9.18 204 204.00 0.00 30.70
MK04 15 � 8 60 62 64.88 40.82 60 63.69 1.99 9.02 60 60.20 0.53 2.35 60 60.00 0.00 12.58
MK05 15 � 4 172 172 172.90 20.23 172 173.38 0.56 7.10 173 173.02 0.14 3.70 172 172.82 0.39 37.89
MK06 10 � 15 58 65 67.38 27.18 60 62.83 1.06 30.21 59 60.20 0.97 10.70 57 58.64 0.66 98.32
MK07 20 � 5 139 140 142.21 35.29 139 141.55 1.07 17.07 139 140.12 1.08 3.26 139 139.42 0.50 26.38
MK08 20 � 10 523 523 523.00 4.65 523 523.00 0.00 4.30 523 523.00 0.00 11.52 523 523.00 0.00 189.41
MK09 20 � 10 307 310 311.29 70.38 307 310.35 0.96 91.99 307 307.00 0.00 28.94 307 307.00 0.00 122.87
MK10 20 � 15 197 214 219.15 89.83 206 211.92 2.59 190.11 202 205.84 1.79 33.44 198 201.52 1.33 265.80

MRE (%) 18.66 18.95 16.07 19.24 15.58 16.52 14.67 15.46

a The CPU time on a Pentium IV 1.6 GHz processor in C++.
b The CPU time on an Intel Core i5 3.2 GHz processor in C++.
c The CPU time on an Intel 2.83 GHz Xeon processor in Java.

Table 6
Computational results of HDE algorithms on BCdata.

Instance n �m HDE-N1 HDE-N2

Best AVG SD CPUav Best AVG SD CPUav

mt10x 10 � 11 918 922.86 6.11 21.43 918 918.58 2.20 179.22
mt10xx 10 � 12 918 922.04 6.31 21.70 918 918.38 1.90 179.84
mt10xxx 10 � 13 918 919.94 3.96 23.05 918 918.00 0.00 179.39
mt10xy 10 � 12 905 906.52 1.09 22.51 905 905.56 0.79 169.77
mt10xyz 10 � 13 847 856.80 3.99 21.79 847 851.14 4.65 160.24
mt10c1 10 � 11 927 928.92 1.96 21.07 927 927.72 0.45 174.19
mt10cc 10 � 12 910 913.92 3.40 21.00 908 910.60 2.40 165.61
setb4x 15 � 11 925 931.50 2.48 33.04 925 925.82 2.11 338.30
setb4xx 15 � 12 925 930.38 3.29 29.76 925 925.64 1.98 336.24
setb4xxx 15 � 13 925 931.42 3.59 29.89 925 925.48 1.68 353.55
setb4xy 15 � 12 910 921.38 4.44 31.13 910 914.00 3.50 330.18
setb4xyz 15 � 13 905 913.40 4.21 30.39 903 905.28 1.16 314.64
setb4c9 15 � 11 914 919.32 2.87 32.19 914 917.12 2.52 313.02
setb4cc 15 � 12 909 912.58 3.81 32.00 907 909.58 1.89 316.89
seti5x 15 � 16 1204 1215.48 5.36 73.20 1200 1205.64 3.43 1112.77
seti5xx 15 � 17 1202 1205.66 2.56 72.52 1197 1202.68 2.02 1078.60
seti5xxx 15 � 18 1202 1206.10 3.18 72.07 1197 1202.26 2.37 1087.12
seti5xy 15 � 17 1138 1146.86 5.04 78.98 1136 1137.98 2.82 1250.62
seti5xyz 15 � 18 1130 1137.44 3.42 80.85 1125 1129.76 2.44 1244.22
sei5c12 15 � 16 1175 1182.54 7.62 69.06 1171 1175.42 1.63 1141.43
seti5cc 15 � 17 1137 1145.62 5.58 78.83 1136 1137.76 2.48 1222.53

MRE (%) 22.55 23.27 22.39 22.67
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known solutions for the BCdata instances. Oddi et al. (2011) devel-
oped an IFS procedure that can achieve the state-of-the-art perfor-
mance on BCdata.

Our proposed HDE algorithms are also evaluated on this data
set, and the detail computational results are reported in Table 6.
As can be seen from Table 6, HDE-N2 is more effective than HDE-
N1. In detail, HDE-N2 improves 10 best results and all the average
results obtained by HDE-N1 for all 21 instances. Given the SD val-
ues, HDE-N2 is more robust than HDE-N1, too. Nevertheless, the
computational time of HDE-N2 is much longer than that of HDE-N1.

To demonstrate the effectiveness and efficiency of HDE algo-
rithms, we compare the best makespan and the average compu-
tational time obtained by HDE-N1 and HDE-N2 with two
aforesaid state-of-the-art algorithms, which are TSBM2h of
Bo _zejko et al. (2010) and IFS of Oddi et al. (2011). The comparison
results are shown in Table 7. For the IFS algorithm, its perfor-
mance depends on the relaxing factor c, the table lists the results
obtained by running IFS with c = 0.2 to c = 0.7 respectively, and a
maximum CPU time limit of 3200 s is set for each run. From
Table 7, we note that HDE-N2 outperforms all the other three
algorithms in terms of quality of solutions. Indeed, HDE-N2
confirms 19 best known solutions among 21 instances and even
finds a new best known solution for the instance seti5c12 (im-
proved from 1174 to 1171). HDE-N2 is only dominated by TSBM2h
on only one instance namely seti5x, and outperforms TSBM2h in 4
instances out of 21 instances. When all the 21 instances are con-
sidered, the MRE of HDE-N2 is 22.39%, faced to 22.45% for TSBM2-

h, 22.55% for HDE-N1, 23.09% for IFS (c = 0.7). As for the efficiency,
HDE-N2 seems to be more efficient than IFS and is also compared
favorably with TSBM2h considering the much more advanced
computing hardware used by TSBM2h. HDE-N1 spends much less
computational time than the other three algorithms, but it is still
very effective. In fact, HDE-N1 matches 11 best known solutions
among all 21 instances, while IFS totally matches 9 best known
ones under different settings of c.

5.5. Results of HUdata instances

The HUdata is another well known data set for the FJSP. In the
literature, TS of Mastrolilli and Gambardella (2000) and hGA of
Gao et al. (2008) are two algorithms that exhibit the state-of-
the-art performance on this data set. In Table 8, we give the MRE



Table 7
Comparison between the proposed HDE algorithms with TSBM2h and IFS on BCdata.

Instance n �m BKS TSBM2ha IFSb HDE-N1
c HDE-N2

c

Best CPUav 0.2 0.3 0.4 0.5 0.6 0.7 Best CPUav Best CPUav

mt10x 10 � 11 918 922 55.11 980 936 936 934 918 918 918 21.43 918 179.22
mt10xx 10 � 12 918 918 50.18 936 929 936 933 918 926 918 21.70 918 179.84
mt10xxx 10 � 13 918 918 47.57 936 929 936 926 926 926 918 21.43 918 179.39
mt10xy 10 � 12 905 905 76.26 922 923 923 915 905 909 905 22.51 905 169.77
mt10xyz 10 � 13 847 849 110.13 878 858 851 862 847 851 847 21.79 847 160.24
mt10c1 10 � 11 927 927 44.50 943 937 986 934 934 927 927 21.07 927 174.19
mt10cc 10 � 12 908 908 65.74 926 923 919 919 910 911 910 21.00 908 165.61
setb4x 15 � 11 925 925 93.76 967 945 930 925 937 937 925 33.04 925 338.30
setb4xx 15 � 12 925 925 92.28 966 931 933 925 937 929 925 29.76 925 336.24
setb4xxx 15 � 13 925 925 89.405 941 930 950 950 942 935 925 29.89 925 353.55
setb4xy 15 � 12 910 910 150.83 910 941 936 936 916 914 910 31.13 910 330.18
setb4xyz 15 � 13 903 903 152.67 928 909 905 905 905 905 905 30.39 903 314.64
setb4c9 15 � 11 914 914 111.40 926 937 926 926 920 920 914 32.19 914 313.02
setb4cc 15 � 12 907 907 151.19 929 917 907 914 907 909 909 32.00 907 316.89
seti5x 15 � 16 1198 1198 257.75 1210 1199 1199 1205 1207 1209 1204 73.20 1200 1112.77
seti5xx 15 � 17 1197 1197 264.58 1216 1199 1205 1211 1207 1206 1202 72.52 1197 1078.60
seti5xxx 15 � 18 1197 1197 226.29 1205 1206 1206 1199 1206 1206 1202 72.07 1197 1087.12
seti5xy 15 � 17 1136 1136 675.40 1175 1171 1175 1166 1156 1148 1138 78.98 1136 1250.62
seti5xyz 15 � 18 1125 1128 717.60 1165 1149 1130 1134 1144 1131 1130 80.85 1125 1244.22
sei5c12 15 � 16 1174 1174 351.32 1196 1209 1200 1198 1198 1175 1175 69.06 1171 1141.43
seti5cc 15 � 17 1136 1136 670.35 1177 1155 1162 1166 1138 1150 1137 78.83 1136 1222.53

MRE (%) 22.45 25.48 24.25 24.44 23.96 23.28 23.09 22.55 22.39

a The CPU time on the nVidia Tesla C870 GPU (512 GFLOPS) with 128 streaming processors cores in C.
b The CPU time on an AMD Phenom II X4 Quad 3.5 GHz processor in Java.
c The CPU time on an Intel 2.83 GHz Xeon processor in Java.
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of the best makespan and average makespan obtained by HDE-N1

and HDE-N2 on HUdata, and compare them with the results of TS
and hGA. Globally, it can be seen that HDE-N2 outperforms TS and
hGA on all the three subsets of HUdata in terms of the best makespan
obtained. As for the average makespan obtained, hGA seems to be the
best one among the four algorithms. Besides, TS, hGA and HDE-N2 all
work better than HDE-N1 in terms of quality of solutions.

Also, it is encouraging that our proposed HDE-N2 identifies
22 new best known solutions for HUdata instances (16 in-
stances from Rdata, 6 instances from Vdata), among which five
solutions are optimal ones. In Table 9, we record both the pre-
Table 8
Comparison of the proposed HDE algorithms with TS and hGA in the MRE on HUdata.

Instance n �m Edata Rdata

TS hGA HDE-N1 HDE-N2 TS h

mt06/10/20 6 � 6 0.00 0.00 0.05 0.00 0.34 0
10 � 10 (0.10) (0.10) (0.13) (0.07) (0.36) (
20 � 5

la01-la05 10 � 5 0.00 0.00 0.00 0.00 0.11 0
(0.00) (0.00) (0.00) (0.00) (0.24) (

la06-la10 15 � 5 0.00 0.00 0.00 0.00 0.03 0
(0.00) (0.00) (0.10) (0.00) (0.08) (

la11-la15 20 � 5 0.29 0.29 0.29 0.29 0.02 0
(0.29) (0.29) (0.29) (0.29) (0.02) (

la16-la20 10 � 10 0.00 0.02 0.02 0.02 1.64 1
(0.00) (0.02) (0.48) (0.02) (1.68) (

la21-la25 15 � 10 5.62 5.60 5.82 5.46 3.82 3
(5.93) (5.66) (6.41) (5.91) (4.38) (

la26-la30 20 � 10 3.47 3.28 3.89 3.11 0.59 0
(3.76) (3.32) (4.71) (3.64) (0.76) (

la31-la35 30 � 10 0.30 0.32 0.50 0.32 0.09 0
(0.32) (0.32) (0.59) (0.39) (0.14) (

la36-la40 15 � 15 8.99 8.82 9.63 8.89 3.97 3
(9.13) (8.95) (10.43) (9.36) (4.47) (

MRE (%) 2.17 2.13 2.35 2.11 1.24 1
(2.27) (2.17) (2.68) (2.29) (1.36) (
vious and our newly obtained best known solutions for these
instances.

In Table 10, we summarize the MRE of the best makespan ob-
tained by the proposed HDE algorithms and other known algo-
rithms in the literature, and all these algorithms are ranked on
each data set (Edata, Rdata, Vdata) according to this metric. From
Table 10, it can be concluded that the proposed HDE-N1 and
HDE-N2 are both extremely effective on HUdata. Indeed, among
all the 11 referred algorithms, HDE-N1 is the fifth rank both on Eda-
ta and Vdata and is the fourth rank on Rdata; HDE-N2 ranks first on
all the three subsets of HUdata.
Vdata

GA HDE-N1 HDE-N2 TS hGA HDE-N1 HDE-N2

.34 0.34 0.34 0.00 0.00 0.00 0.00
0.34) (0.45) (0.34) (0.00) (0.00) (0.01) (0.00)

.07 0.11 0.04 0.00 0.00 0.04 0.00
0.07) (0.31) (0.10) (0.11) (0.00) (0.19) (0.01)

.00 0.05 0.00 0.00 0.00 0.03 0.00
0.00) (0.10) (0.01) (0.03) (0.00) (0.10) (0.00)

.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00)

.64 1.64 1.64 0.00 0.00 0.00 0.00
1.64) (1.69) (1.69) (0.00) (0.00) (0.00) (0.00)

.57 3.73 3.13 0.70 0.60 1.63 0.57
3.69) (4.57) (3.66) (0.85) (0.68) (2.15) (0.96)

.64 1.04 0.60 0.11 0.11 0.42 0.10
0.72) (1.41) (0.81) (0.18) (0.13) (0.63) (0.19)

.09 0.22 0.08 0.01 0.00 0.12 0.03
0.12) (0.33) (0.13) (0.03) (0.00) (0.18) (0.03)

.86 3.98 3.38 0.00 0.00 0.00 0.00
3.92) (4.92) (4.19) (0.00) (0.00) (0.01) (0.00)

.19 1.28 1.05 0.095 0.082 0.26 0.080
1.21) (1.59) (1.26) (0.13) (0.09) (0.38) (0.14)



Table 9
The makespan of new best known solutions identified by the proposed HDE-N2 on
HUdata.

Instance Data set LB Prev. best known New best known

la01 Rdata 570 571 570
la03 Rdata 477 478 477
la07 Rdata 749 750 749
la15 Rdata 1089 1090 1089
la21 Rdata 808 835 833
la22 Rdata 737 760 758
la23 Rdata 816 842 832
la24 Rdata 775 808 801
la25 Rdata 752 791 785
la27 Rdata 1085 1091 1090
la29 Rdata 993 998 997
la33 Rdata 1497 1499 1498
la36 Rdata 1016 1030 1028
la37 Rdata 989 1077 1066
la38 Rdata 943 962 960
la40 Rdata 955 970 956
la21 Vdata 800 806 805
la22 Vdata 733 739 735
la23 Vdata 809 815 813
la26 Vdata 1052 1054 1053
la27 Vdata 1084 1085 1084
la30 Vdata 1068 1070 1069

Y. Yuan, H. Xu / Computers & Industrial Engineering 65 (2013) 246–260 257
5.6. Further performance analysis of HDE

5.6.1. Significance tests between HDE algorithms
In order to show whether the two proposed HDE algorithms

have significant performance differences for different problems,
statistical analysis is further carried out. Since the obtained make-
span values may present neither normal distribution nor homoge-
neity of variance, the non-parametric tests are considered to be
used according to the recommendations made in Demšar (2006).
Specifically, the Wilcoxon signed-rank test, a pairwise non-para-
metric statistical test, is adopted to check whether there are signif-
icant differences in the optimization effects of both algorithms on
each problem instance. The results are summarized in Table 11.
The first column reports the data set; the second column shows
the number of instances for each class; in the third column, we list
instances on which HDE-N2 is statically better than HDE-N1, with a
Table 10
Summary results of the MRE of the best makespan obtained by the proposed HDE algorith

Algorithm Reference Edata

MRE (%)

HDE-N1 This study 2.35
HDE-N2 This study 2.11
TS Hurink et al. (1994) 4.50
GA Chen et al. (1999) 5.59
TS Mastrolilli and Gambardella (2000) 2.17
GA Jia et al. (2003) 9.01
hGA Gao et al. (2008) 2.13
GA Pezzella et al. (2008) 6.00
AIA Bagheri et al. (2010) 6.83
PVNS Yazdani et al. (2010) 3.86
CDDS Ben Hmida et al. (2010) 2.32

Table 11
Summary results of significance tests between HDE-N1 and HDE-N2 on each data set. The

Data set Num

Kacem data 5
BRdata 10
BCdata 21
Hurink Edata 43
Hurink Rdata 43
Hurink Vdata 43
significance level of 0.05. From the significance tests, it seems that
HDE-N1 is enough for solving some small-scale or relative easy
problems, for example, there are no statistical significant differ-
ences in obtained makespan values between HDE-N1 and HDE-N2

on instances mt06 and mt10 in Hurink Edata. HDE-N2 appears to
be more adaptive to handle large-scale or hard problems, for in-
stance, it is more possible for HDE-N2 to find higher quality solu-
tions to all the problems in BCdata. However, as mentioned
before, HDE-N2 requires much more computation effort because
of a larger neighborhood structure used in its embedded local
search.

5.6.2. Influence of parameters on HDE
To obtain a better performance of our HDE, some experiments

are conducted to investigate the influence of parameters.
The impact of parameters NP and Gmax is firstly considered. NP

is increased from 10 to 40 in steps of 10, while Gmax is increased
from 100 to 250 in steps of 50. The other parameters are fixed
according to Table 3 and the algorithm is run 50 times under each
parameter setting. The results got on the instance MK06 are dis-
played in Table 12. As can be seen from Table 12, the increase of
NP or Gmax is beneficial to the quality of solutions at the beginning.
However, there seems to be little effect to increase NP or Gmax fur-
ther as they reach certain values, sometimes the obtained results
even get worse. For example, when NP = 30, the performance of
HDE-N2 is not improved with the increasing of Gmax from 200 to
250. Moreover, no matter the increase of NP or Gmax will increase
the computational effort.

In Tables 13 and 14, the influences of parameters Pl and itermax,
F and Cr are reported for the instance MK06, respectively. From Ta-
ble 13, Pl and itermax have the impact on HDE similar to NP and
Gmax. As for F and Cmax, many settings of them could keep the good
performance of HDE, but there also exist some settings resulting in
relatively poor performance. Take MK06 for example, the setting of
F = 0.1,Cr = 0.3 seems to be an ideal choice for HDE, while F = 0.7,
Cr = 0.7 is not recommended.

We also carry out the experiments on some other instances to
observe the influence of parameters. Due to the space limitations,
the results will no longer be listed here. Overall, NP and Gmax (Pl

and itermax) should be set suitably to balance the optimization
ms and other known algorithms in the literature.

Rdata Vdata

Rank MRE (%) Rank MRE (%) Rank

5 1.28 4 0.26 5
1 1.05 1 0.080 1
7 2.30 7 0.40 6
8 4.41 9 2.59 10
3 1.24 3 0.095 3

11 8.34 11 3.24 11
2 1.19 2 0.082 2
9 4.42 10 2.04 9

10 3.98 8 1.29 8
6 1.88 6 0.42 7
4 1.34 5 0.12 4

level of significance a is set to 0.05.

Instances on which HDE-N2 is significantly better than HDE-N1

Case 5
MK02, MK05, MK06, MK07, MK10
All the instances
mt20, la22, la24-la31, la34, la36-la40
mt10, mt20, la01-la03, la06-la08, la10, la15, la21-la35, la37, la39, la40
la01-la03, la06-la10, la15, la21-la35



Table 15
Comparison of DE, MRLS, and HDE algorithms.

Data set Num DE MRLS-N1 MRLS-N2 HDE-N1 HDE-N2

MREb (%) MREav (%) MREb (%) MREav (%) MREb (%) MREav (%) MREb (%) MREav (%) MREb (%) MREav

BRdata 10 34.47 42.98 36.63 41.44 34.24 39.87 15.58 16.52 14.67 15.46
BCdata 21 24.76 28.53 25.52 27.78 23.78 25.37 22.55 23.27 22.39 22.67
Hurink Edata 43 5.26 6.79 4.70 5.42 3.70 4.28 2.35 2.68 2.11 2.29
Hurink Rdata 43 7.51 9.92 5.28 5.94 4.55 5.18 1.28 1.59 1.05 1.26
Hurink Vdata 43 5.50 7.86 4.18 5.08 3.77 4.79 0.26 0.38 0.080 0.14

Table 13
Influence of parameters Pl and itermax on HDE.

Pl itermax = 10 itermax = 40 itermax = 70 itermax = 100

HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2

AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav

0.1 66.30 2.13 2.26 64.18 1.87 3.09 62.44 1.31 3.29 60.68 1.04 11.18 62.08 0.78 3.45 60.28 0.76 15.37 62.18 1.16 3.49 60.24 0.85 16.24
0.3 64.38 1.92 3.05 62.52 1.37 7.20 61.12 1.10 5.51 59.46 0.93 33.36 60.76 0.94 5.99 59.24 0.82 43.50 61.00 0.86 6.26 59.18 0.72 45.31
0.5 63.30 1.66 4.03 61.92 1.51 12.61 60.72 0.93 7.26 59.34 0.77 56.67 60.44 0.73 8.11 58.88 0.85 70.86 60.46 0.76 8.50 58.92 0.70 71.99
0.7 63.00 1.40 4.89 61.80 1.51 17.19 60.38 0.92 9.48 59.12 0.90 80.25 59.92 0.80 10.48 58.76 0.66 97.60 59.94 0.77 10.80 58.70 0.58 100.39
0.9 62.60 1.60 5.70 61.78 1.49 22.00 60.24 0.80 11.32 58.98 0.89 104.24 60.04 0.73 12.67 58.64 0.69 127.30 59.94 0.84 12.83 58.54 0.58 128.02

Table 14
Influence of parameters F and Cr on HDE.

F Cr = 0.1 Cr = 0.3 Cr = 0.5 Cr = 0.7

HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2

AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav

0.1 61.04 0.57 9.53 59.34 0.48 92.60 60.20 0.97 10.70 58.64 0.66 98.32 60.48 1.09 7.73 59.38 0.88 82.04 62.74 1.32 5.30 60.76 1.27 70.96
0.3 60.68 0.62 12.24 59.26 0.69 99.96 60.68 0.77 17.79 58.72 0.73 110.41 60.58 0.88 19.98 59.42 0.84 105.02 60.88 1.12 19.64 59.50 1.02 100.77
0.5 60.94 0.65 12.66 59.16 0.55 101.86 61.18 0.77 19.67 59.38 0.60 108.57 61.74 0.72 22.82 59.56 0.73 96.37 62.08 1.19 24.21 60.12 0.87 84.88
0.7 60.94 0.62 13.92 59.06 0.51 104.67 61.90 0.68 21.91 59.94 0.47 102.15 63.04 0.83 25.22 60.90 0.79 75.54 64.18 1.24 25.87 62.20 0.99 49.57

Table 12
Influence of parameters NP and Gmax on HDE.

NP Gmax = 100 Gmax = 150 Gmax = 200 Gmax = 250

HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2 HDE-N1 HDE-N2

AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav AVG SD CPUav

10 61.68 1.11 1.87 60.02 1.10 16.53 61.38 1.01 2.68 59.62 0.88 24.35 61.14 1.07 3.38 59.30 0.79 31.66 60.68 0.87 4.14 59.58 0.81 38.64
20 61.02 0.87 3.90 59.36 0.72 32.93 60.70 0.81 5.48 59.20 0.76 50.16 60.76 0.96 7.18 59.14 0.78 65.53 60.32 1.00 8.64 58.78 0.74 80.55
30 60.98 0.98 5.91 59.04 0.67 49.33 60.38 0.83 8.36 58.78 0.71 75.61 60.20 0.95 10.56 58.64 0.66 98.32 60.20 1.01 12.80 58.70 0.65 123.35
40 60.64 0.88 7.67 59.08 0.80 66.82 60.22 0.79 11.40 58.80 0.61 97.78 60.02 0.65 13.95 58.58 0.57 130.62 59.62 0.85 17.44 58.54 0.61 164.79

258 Y. Yuan, H. Xu / Computers & Industrial Engineering 65 (2013) 246–260
effect and computation effort, and larger problems usually deserve
larger values of them. But for certain problem instance, they are
not simply the larger the better. The performance of HDE is not
very sensitive to F and Cr. But we find that F = 0.5, Cr = 0.1 seems
to be more effective for the problems with a lower degree of flex-
ibility (usually less than 1.5), while the setting of F = 0.1, Cr = 0.3
appears to be better for others. The flexibility means the average
number of alternative machines for each operation in the problem.

5.6.3. Effect of hybridizing DE and local search algorithms
To investigate the effectiveness of hybridizing DE-based global

search and local search algorithms, the experiments and compari-
sons are carried out between the HDE algorithms with DE and mul-
ti-start random local search (MRLS) algorithms.

The DE algorithm is formed by removing the local search proce-
dure directly from the HDE. The MRLS is designed by replacing the
DE operators in the HDE with random generating method to pro-
duce new solutions. Specifically, the MRLS works as follows: a
solution is randomly generated every time, then the local search
is applied to it with certain probability; this procedure is repeated
until maximum replications (Rmax) are reached. Corresponding to
the HDE, the MRLS also has two variants: MRLS-N1 and MRLS-N2.

In Table 15, we report the performance of DE, MRLS and HDE
algorithms in terms of MRE of the best makespan ( MREb) and aver-
age makespan (MREav) obtained. The parameters of DE and MRLS
are consistent with those of the HDE. For the MRLS, its unique
parameter Rmax is set as NP � Gmax in order to make a fair compar-
ing with the HDE. From Table 15, it is easily observed that the re-
sults generated by HDE-N1 (or HDE-N2) is obviously better than
those by DE and MRLS-N1 (or MRLS-N2) on each data set. To better
show the superiority of hybridization, the typical convergence rate
curves for these algorithms based on the instance la40 in Hurink
Edata are depicted in Fig. 8. It can be seen from Fig. 8 that the
HDE algorithms could converge fast to lower makespan values
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Fig. 8. Convergence rate curve of the DE, MRLS, and HDE algorithms on the instance
la40 in Hurink Edata.

Table 16
Results of PDE and PLS on each data set.

Data set Num HDE-N1 HDE-N2

PDE (%) PLS (%) PDE (%) PLS (%)

Kacem data 5 24.01 75.99 8.90 91.10

BRdata 10 18.08 81.82 2.39 97.61
BCdata 21 15.11 84.89 1.16 98.84
Hurink Edata 43 11.44 88.56 1.27 98.73
Hurink Rdata 43 6.49 93.51 1.25 98.75
Hurink Vdata 43 4.12 95.88 1.32 98.68

Table 17
Comparison of pure DE, GA of Chen, GA of Jia and GA of Pezzella on BRdata.

Instance n �m DE GA_Chen GA_Jia GA_Pezzella

MK01 10 � 6 40 40 40 40
MK02 10 � 6 27 29 28 26
MK03 15 � 8 204 204 204 204
MK04 15 � 8 60 63 61 60
MK05 15 � 4 173 181 176 173
MK06 10 � 15 63 60 62 63
MK07 20 � 5 144 148 145 139
MK08 20 � 10 523 523 523 523
MK09 20 � 10 311 308 310 311
MK10 20 � 15 223 212 216 212

MRE (%) 18.99 19.55 19.11 17.53
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than DE and MRLS algorithms. The conclusion holds similarly for
other benchmark instances.

Based on the above results and comparisons, it is concluded that
the HDE yields superior performance to its individual components
(DE and local search). Its success could be attributed that the DE
provides good start points for local search algorithm by performing
the global exploration, while the local search further improves
these obtained solutions through conducting local exploitation,
and guides the DE to more promising search space. That is, the
HDE integrates the advantages of DE for diversification and local
search for intensification, which well achieves the balance between
exploration and exploitation.

In Table 16, the relation of computational efforts between DE
and local search in the HDE are recorded, where PDE and PLS denote
as the percentage of DE and local search occupy respectively. As
can be seen from Table 16, the local search needs most of the com-
putational cost, especially in the HDE-N2. It is not surprising be-
cause each iteration of local search is much more computational
expensive than the evaluation of the vectors.

5.6.4. Performance potential of pure DE algorithm
The emphasis of this paper is on the hybrid algorithms, but here

we would like to roughly show the performance potential of pure
DE algorithm. In Table 15, some results of DE have ever been re-
ported, where the parameters of DE there are set according to
the HDE that is only to demonstrate the effectiveness of hybridiza-
tion. However, the parameters of HDE are not so suitable for the
pure DE. To investigate how well the performance of pure DE can
achieve, NP and Gmax are reset as 500 and 10,000; the resulting
number of NP � Gmax = 5 � 106 objective function evaluations
equals to the one adopted in Pezzella et al. (2008), where the pop-
ulation size and number of generations are set as 5000 and 1000
respectively. In Table 17, we compare the best makespan values
obtained on BRdata by our DE with those by three pure GA algo-
rithms, which are GA of Chen et al. (1999), GA of Jia et al. (2003)
and GA of Pezzella et al. (2008). From Table 17, the overall results
of DE are just a little worse than those got by GA of Pezzella et al.
(2008). But it should be noted that different strategies such as
problem-dependent initialization and intelligent mutation are
integrated in GA of Pezzella et al. (2008), while our DE only em-
ploys the basic DE operators to explore the problem space.

6. Conclusions

This paper presented hybrid differential evolution (HDE) algo-
rithms for solving the FJSP with the makespan criterion, which
has a significant application value in modern manufacturing envi-
ronments. With a novel conversion mechanism, the DE algorithm
that works on the continuous domain is adapted to explore the
problem space of the discrete FJSP. It is worth noting that this con-
version mechanism is appropriate not only for the DE but also for
other continuous evolutionary algorithms to deal with the FJSP,
such as harmony search (HS) (Geem and Kim, 2001) and artificial
bee colony (ABC) (Karaboga and Basturk, 2007) algorithms. To en-
hance the intensification search and to balance the exploration and
exploitation, a well developed local search algorithm based on the
critical path is incorporated in the framework of DE. Furthermore,
two neighborhood structures are presented in the local search, and
the efficiency is stressed by using a speed-up method to find an
acceptable schedule more quickly within the neighborhood. Com-
putational results and comparisons demonstrate that, the pro-
posed HDE-N1 is especially effective and efficient for the FJSP and
outperforms several recently proposed algorithms; HDE-N2 could
obtain higher quality solutions than HDE-N1 and is compared
favorably with the state of the art, some best known solutions
for well known benchmark instances have even been further im-
proved by HDE-N2. The future work is to develop multi-objective
HDE algorithms for the multi-objective FJSP and apply the DE algo-
rithm to other kinds of combinational optimization problems.
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Appendix A

The details of all the new best known solutions obtained by
HDE-N2 for benchmark instances (1 BRdata instance, 1 BCdata in-
stance, 22 HUdata instances) are available online:

http://www.166.111.4.17:8080/2012310563/NBKS.rar.

http://www.166.111.4.17:8080/2012310563/NBKS.rar
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